Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(2): 484-496, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37823527

RESUMO

Improving tolerance to ethylene-induced early senescence of flowers and fruits is of major economic importance for the ornamental and food industry. Genetic modifications of genes in the ethylene-signalling pathway have frequently resulted in increased tolerance but often with unwanted side effects. Here, we used CRISPR/Cas9 to knockout the function of two CpEil1 genes expressed in flowers of the diploid ornamental plant Campanula portenschlagiana. The ethylene tolerance in flowers of the primary mutants with knockout of only one or all four alleles clearly showed increased tolerance to exogenous ethylene, although lower tolerance was obtained with one compared to four mutated alleles. The allele dosage effect was confirmed in progenies where flowers of plants with zero, one, two, three and four mutated alleles showed increasing ethylene tolerance. Mutation of the Cpeil1 alleles had no significant effect on flower longevity and endogenous flower ethylene level, indicating that CpEil1 is not involved in age-dependent senescence of flowers. The study suggests focus on EIN3/Eils expressed in the organs subjected to early senescence for obtaining tolerance towards exogenous ethylene. Furthermore, the observed allelic dosage effect constitutes a key handle for a gradual regulation of sensitivity towards exogenous ethylene, simultaneously monitoring possibly unwanted side effects.


Assuntos
Sistemas CRISPR-Cas , Campanulaceae , Sistemas CRISPR-Cas/genética , Senescência Vegetal , Etilenos/metabolismo , Mutação/genética , Fatores de Transcrição/genética , Campanulaceae/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética
2.
Theor Appl Genet ; 132(11): 3009-3022, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31317234

RESUMO

Powdery mildew is a severe disease in wheat. In barley, durable resistance exists, based on non-functionality of the Mlo gene. As a model to analyse the effects of mutagenesis in the homoeologous Mlo genes of wheat, we developed mlo-based powdery mildew resistance in tetraploid durum wheat. To obtain Mlo mutations, we screened a TILLING population developed in tetraploid wheat "Kronos" for which the captured exome sequence of  > 1500 lines is available. This resulted in 23 mutants for Mlo-A1 and 26 non-redundant mutants for Mlo-B1. Two Mlo-A1 and four Mlo-B1 mutants were crossed to obtain eight F2 mutant lines that showed a range of phenotypes from susceptibility to full resistance. Pot experiments under semi-field conditions confirmed the resistance levels for six of the mutants without any signs of adverse pleiotropic effects. Resistance ranking was similar across six powdery mildew isolates, indicating no isolate specificity of the mlo-based resistance. The effect of mutations in the Mlo-B1 gene was stronger than in the Mlo-A1 gene, probably reflecting differences in wild-type Mlo gene expression levels. Strong partial resistance effects were observed with single mlo-B1 mutations hence, revealing a dosage effect of mlo mutant alleles. Two of the four mlo-B1 mutations (W163* and P335L) were very strong; however, the highest combined effect was observed with the MloA-P335S/MloB-P335L combination, suggesting that non-functional, but full-length Mlo proteins might have the strongest effect compared with nonsense mutations. Our results show that mlo-based resistance might offer possibilities to introduce durable protection in tetraploid wheat against powdery mildew.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/genética , Tetraploidia , Triticum/genética , Alelos , Genes de Plantas , Fenótipo , Doenças das Plantas/microbiologia , Triticum/microbiologia
3.
Plant Sci ; 335: 111785, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37419327

RESUMO

Application of the mlo-based resistance in barley against powdery mildew attacks is a major success in crop breeding, since it confers durable disease resistance. Resistance caused by mutations in the Mlo gene seems to be ubiquitous across a range of species. This work addresses the introduction of mlo-based resistance into hexaploid wheat, which is complicated by the occurrence of three homoeologous genes: Mlo-A1, Mlo-B1 and Mlo-D1. EMS-generated mutant plants were screened for mutations in the three homoeologues. We selected and combined 6, 8, and 4 mutations, respectively, to obtain triple homozygous mlo mutant lines. Twenty-four mutant lines showed highly effective resistance towards attack by the powdery mildew pathogen under field conditions. All 18 mutations appeared to contribute to resistance; however, they had different effects on the occurrence of symptoms such as chlorotic and necrotic spots, which are pleiotropic to the mlo-based powdery mildew resistance. We conclude that to obtain highly effective powdery mildew resistance in wheat and to avoid detrimental pleiotropic effects, all three Mlo homoeologues should be mutated; however, at least one of the mutations should be of the weaker type in order to alleviate strong pleiotropic effects from the other mutations.


Assuntos
Ascomicetos , Ascomicetos/genética , Triticum/genética , Melhoramento Vegetal , Resistência à Doença/genética , Erysiphe , Doenças das Plantas/genética , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA