Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Immunol Cell Biol ; 99(7): 782-789, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33811670

RESUMO

Neutrophils are the most abundant circulating white blood cells and are the central players of the innate immune response. During their lifecycle, neutrophils mainly evolve under low oxygen conditions (0.1-4% O2 ), to which they are well adapted. Neutrophils are atypical cells since they are highly glycolytic and susceptible to oxygen exposure, which induces their activation and death through mechanisms that remain currently elusive. Nevertheless, nearly all studies conducted on neutrophils are carried out under atmospheric oxygen (21%), corresponding to hyperoxia. Here, we investigated the impact of hyperoxia during neutrophil purification and culture on neutrophil viability, activation and cytosolic protein content. We demonstrate that neutrophil hyper-activation (CD62L shedding) is induced during culture under hyperoxic conditions (24 h), compared with neutrophils cultured under anoxic conditions. Spontaneous neutrophil extracellular trap (NET) formation is observed when neutrophils face hyperoxia during purification or culture. In addition, we show that maintaining neutrophils in autologous plasma is the preferred strategy to maintain their basal state. Our results show that manipulating neutrophils under hyperoxic conditions leads to the loss of 57 cytosolic proteins during purification, while it does not lead to an immediate impact on neutrophil activation (CD11bhigh , CD54high , CD62Lneg ) or viability (DAPI+ ). We identified two clusters of proteins belonging to cholesterol metabolism and to the complement and coagulation cascade pathways, which are highly susceptible to neutrophil oxygen exposure during neutrophil purification. In conclusion, protecting neutrophil from oxygen during their purification and culture is recommended to avoid activation and to prevent the alteration of cytosolic protein composition.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Contagem de Leucócitos , Ativação de Neutrófilo , Oxigênio
2.
Int J Mol Sci ; 21(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906243

RESUMO

Polymorphonuclear neutrophils (PMNs) are innate immune cells, which represent 50% to 70% of the total circulating leukocytes. How PMNs adapt to various microenvironments encountered during their life cycle, from the bone marrow, to the blood plasma fraction, and to inflamed or infected tissues remains largely unexplored. Metabolic shifts have been reported in other immune cells such as macrophages or lymphocytes, in response to local changes in their microenvironment, and in association with a modulation of their pro-inflammatory or anti-inflammatory functions. The potential contribution of metabolic shifts in the modulation of neutrophil activation or survival is anticipated even though it is not yet fully described. If neutrophils are considered to be mainly glycolytic, the relative importance of alternative metabolic pathways, such as the pentose phosphate pathway, glutaminolysis, or the mitochondrial oxidative metabolism, has not been fully considered during activation. This statement may be explained by the lack of knowledge regarding the local availability of key metabolites such as glucose, glutamine, and substrates, such as oxygen from the bone marrow to inflamed tissues. As highlighted in this review, the link between specific metabolic pathways and neutrophil activation has been outlined in many reports. However, the impact of neutrophil activation on metabolic shifts' induction has not yet been explored. Beyond its importance in neutrophil survival capacity in response to available metabolites, metabolic shifts may also contribute to neutrophil population heterogeneity reported in cancer (tumor-associated neutrophil) or auto-immune diseases (Low/High Density Neutrophils). This represents an active field of research. In conclusion, the characterization of neutrophil metabolic shifts is an emerging field that may provide important knowledge on neutrophil physiology and activation modulation. The related question of microenvironmental changes occurring during inflammation, to which neutrophils will respond to, will have to be addressed to fully appreciate the importance of neutrophil metabolic shifts in inflammatory diseases.


Assuntos
Redes e Vias Metabólicas/imunologia , Mitocôndrias/imunologia , Ativação de Neutrófilo , Neutrófilos/imunologia , Animais , Sobrevivência Celular/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Mitocôndrias/patologia , Neutrófilos/patologia , Oxirredução
3.
J Invest Dermatol ; 144(1): 152-164.e7, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516311

RESUMO

Cells of the monocyte/macrophage lineage are an integral component of the body's innate ability to restore tissue function after injury. In parallel to mounting an inflammatory response, clearance of monocytes/macrophages from the wound site is critical to re-establish tissue functionality and integrity during the course of healing. The role of regulated cell death in macrophage clearance from damaged tissue and its implications for the outcome of the healing response is little understood. In this study, we explored the role of macrophage-specific FADD-mediated cell death on Ripk3-/- background in a mechanical skin injury model in mice. We found that combined inhibition of RIPK3-mediated necroptosis and FADD-caspase-8-mediated apoptosis in macrophages profoundly delayed wound healing. Importantly, RIPK3 deficiency alone did not considerably alter the wound healing process and macrophage population dynamics, arguing that inhibition of FADD-caspase-8-dependent death of macrophages is primarily responsible for delayed wound closure. Notably, TNF blockade reversed the accumulation of Ly6Chigh macrophages induced by combined deficiency of FADD and RIPK3, indicating a critical dual role of TNF-mediated prosurvival and cell death signaling, particularly in this highly proinflammatory macrophage subset. Our findings reveal a previously uncharacterized cross-talk of inflammatory and cell death signaling in macrophages in regulating repair processes in the skin.


Assuntos
Apoptose , Macrófagos , Animais , Camundongos , Caspase 8/metabolismo , Macrófagos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Pele/metabolismo
4.
Gut Microbes ; 15(2): 2271597, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37876025

RESUMO

Shigella spp. are the causative agents of bacterial dysentery and shigellosis, mainly in children living in developing countries. The study of Shigella entire life cycle in vivo and the evaluation of vaccine candidates' protective efficacy have been hampered by the lack of a suitable animal model of infection. None of the studies evaluated so far (rabbit, guinea pig, mouse) allowed the recapitulation of full shigellosis symptoms upon Shigella oral challenge. Historical reports have suggested that dysentery and scurvy are both metabolic diseases associated with ascorbate deficiency. Mammals, which are susceptible to Shigella infection (humans, non-human primates and guinea pigs) are among the few species unable to synthesize ascorbate. We optimized a low-ascorbate diet to induce moderate ascorbate deficiency, but not scurvy, in guinea pigs to investigate whether poor vitamin C status increases the progression of shigellosis. Moderate ascorbate deficiency increased shigellosis symptom severity during an extended period of time (up to 48 h) in all strains tested (Shigella sonnei, Shigella flexneri 5a, and 2a). At late time points, an important influx of neutrophils was observed both within the disrupted colonic mucosa and in the luminal compartment, although Shigella was able to disseminate deep into the organ to reach the sub-mucosal layer and the bloodstream. Moreover, we found that ascorbate deficiency also increased Shigella penetration into the colon epithelium layer in a Gulo-/- mouse infection model. The use of these new rodent models of shigellosis opens new doors for the study of both Shigella infection strategies and immune responses to Shigella infection.


Assuntos
Disenteria Bacilar , Microbioma Gastrointestinal , Shigella , Cobaias , Humanos , Animais , Coelhos , Camundongos , Disenteria Bacilar/microbiologia , Modelos Animais de Doenças , Shigella flexneri , Ácido Ascórbico , Mamíferos
5.
Artigo em Inglês | MEDLINE | ID: mdl-36041784

RESUMO

Monocytes/macrophages are key components of the body's innate ability to restore tissue function after injury. In most tissues, both embryo-derived tissue-resident macrophages and recruited blood monocyte-derived macrophages contribute to the injury response. The developmental origin of injury-associated macrophages has a major impact on the outcome of the healing process. Macrophages are abundant at all stages of repair and coordinate the progression through the different phases of healing. They are highly plastic cells that continuously adapt to their environment and acquire phase-specific activation phenotypes. Advanced omics methodologies have revealed a vast heterogeneity of macrophage activation phenotypes and metabolic status at injury sites in different organs. In this review, we highlight the role of the developmental origin, the link between the wound phase-specific activation state and metabolic reprogramming as well as the fate of macrophages during the resolution of the wounding response.


Assuntos
Ativação de Macrófagos , Macrófagos , Macrófagos/metabolismo , Cicatrização/fisiologia
6.
Sci Rep ; 10(1): 10659, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606354

RESUMO

In human blood, oxygen is mainly transported by red blood cells. Accordingly, the dissolved oxygen level in plasma is expected to be limited, although it has not been quantified yet. Here, by developing dedicated methods and tools, we determined that human plasma pO2 = 8.4 mmHg (1.1% O2). Oxygen solubility in plasma was believed to be similar to water. Here we reveal that plasma has an additional ascorbate-dependent oxygen-reduction activity. Plasma experimental oxygenation oxidizes ascorbate (49.5 µM in fresh plasma vs < 2 µM in oxidized plasma) and abolishes this capacity, which is restored by ascorbate supplementation. We confirmed these results in vivo, showing that the plasma pO2 is significantly higher in ascorbate-deficient guinea pigs (Ascorbateplasma < 2 µM), compared to control (Ascorbateplasma > 15 µM). Plasma low oxygen level preserves the integrity of oxidation-sensitive components such as ubiquinol. Circulating leucocytes are well adapted to these conditions, since the abundance of their mitochondrial network is limited. These results shed a new light on the importance of oxygen exposure on leucocyte biological study, in regards with the reducing conditions they encounter in vivo; but also, on the manipulation of blood products to improve their integrity and potentially improve transfusions' efficacy.


Assuntos
Ácido Ascórbico/sangue , Ácido Ascórbico/metabolismo , Oxigênio/sangue , Plasma/metabolismo , Animais , Linhagem Celular , Linhagem da Célula/fisiologia , Eritrócitos/metabolismo , Cobaias , Células HEK293 , Células Hep G2 , Humanos , Hipóxia/sangue , Hipóxia/metabolismo , Oxirredução , Solubilidade , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
7.
J Vis Exp ; (143)2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30663636

RESUMO

Here, we provide a protocol involving the use of MUB40, a synthesized peptide with the ability to bind glycosylated lactoferrin stored at high concentrations in specific and tertiary granules of neutrophils. This protocol details how MUB40 conjugated directly to a fluorophore can be used to stain neutrophils in fixed/permeabilized tissues as well as how this can be used in live-cell imaging to assay for neutrophil activation and de-granulation. Neutrophil detection methods are limited to species-specific monoclonal antibodies, which are not always suitable for certain applications. MUB40 does not penetrate the cell membrane and is thus excluded from lactoferrin stored in non-activated/non-permeabilized neutrophils. MUB40 has the added benefit of recognizing lactoferrin from a broad host range, making it especially useful for comparing results in studies involving multiple research models, reducing the number of duplicate reagents, and simplifying protocols through single-step staining.


Assuntos
Mediadores da Inflamação/metabolismo , Neutrófilos/imunologia , Peptídeos/metabolismo , Humanos
8.
Nat Microbiol ; 4(11): 2001-2009, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31383999

RESUMO

Pathogenic enterobacteria face various oxygen (O2) levels during intestinal colonization from the O2-deprived lumen to oxygenated tissues. Using Shigella flexneri as a model, we have previously demonstrated that epithelium invasion is promoted by O2 in a type III secretion system-dependent manner. However, subsequent pathogen adaptation to tissue oxygenation modulation remained unknown. Assessing single-cell distribution, together with tissue oxygenation, we demonstrate here that the colonic mucosa O2 is actively depleted by S. flexneri aerobic respiration-and not host neutrophils-during infection, leading to the formation of hypoxic foci of infection. This process is promoted by type III secretion system inactivation in infected tissues, favouring colonizers over explorers. We identify the molecular mechanisms supporting infectious hypoxia induction, and demonstrate here how enteropathogens optimize their colonization capacity in relation to their ability to manipulate tissue oxygenation during infection.


Assuntos
Disenteria Bacilar/metabolismo , Mucosa Intestinal/microbiologia , Oxigênio/metabolismo , Shigella flexneri/patogenicidade , Animais , Hipóxia Celular , Modelos Animais de Doenças , Disenteria Bacilar/microbiologia , Feminino , Cobaias , Células Hep G2 , Humanos , Mucosa Intestinal/metabolismo , Coelhos , Shigella flexneri/metabolismo , Sistemas de Secreção Tipo III/metabolismo
9.
Cell Chem Biol ; 25(4): 483-493.e9, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29478905

RESUMO

Neutrophils represent the most abundant immune cells recruited to inflamed tissues. A lack of dedicated tools has hampered their detection and study. We show that a synthesized peptide, MUB40, binds to lactoferrin, the most abundant protein stored in neutrophil-specific and tertiary granules. Lactoferrin is specifically produced by neutrophils among other leukocytes, making MUB40 a specific neutrophil marker. Naive mammalian neutrophils (human, guinea pig, mouse, rabbit) were labeled by fluorescent MUB40 conjugates (-Cy5, Dylight405). A peptidase-resistant retro-inverso MUB40 (RI-MUB40) was synthesized and its lactoferrin-binding property validated. Neutrophil lactoferrin secretion during in vitro Shigella infection was assessed with RI-MUB40-Cy5 using live cell microscopy. Systemically administered RI-MUB40-Cy5 accumulated at sites of inflammation in a mouse arthritis inflammation model in vivo and showed usefulness as a potential tool for inflammation detection using non-invasive imaging. Improving neutrophil detection with the universal and specific MUB40 marker will aid the study of broad ranges of inflammatory diseases.


Assuntos
Carbocianinas/química , Corantes Fluorescentes/química , Inflamação/diagnóstico , Lactoferrina/análise , Neutrófilos/imunologia , Peptídeos/química , Adulto , Animais , Biomarcadores/análise , Disenteria Bacilar/complicações , Disenteria Bacilar/diagnóstico , Disenteria Bacilar/imunologia , Disenteria Bacilar/microbiologia , Feminino , Cobaias , Humanos , Inflamação/complicações , Inflamação/imunologia , Inflamação/microbiologia , Lactoferrina/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neutrófilos/microbiologia , Coelhos , Shigella/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA