Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 303(1): H75-85, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22561297

RESUMO

Cardiac mammalian target of rapamycin (mTOR) is necessary and sufficient to prevent cardiac dysfunction in pathological hypertrophy. However, the role of cardiac mTOR in heart failure after ischemic injury remains undefined. To address this question, we used transgenic (Tg) mice with cardiac-specific overexpression of mTOR (mTOR-Tg mice) to study ischemia-reperfusion (I/R) injury in two animal models: 1) in vivo I/R injury with transient coronary artery ligation and 2) ex vivo I/R injury in Langendorff-perfused hearts with transient global ischemia. At 28 days after I/R, mortality was lower in mTOR-Tg mice than littermate control mice [wild-type (WT) mice]. Echocardiography and MRI demonstrated that global cardiac function in mTOR-Tg mice was preserved, whereas WT mice exhibited significant cardiac dysfunction. Masson's trichrome staining showed that 28 days after I/R, the area of interstitial fibrosis was smaller in mTOR-Tg mice compared with WT mice, suggesting that adverse left ventricular remodeling is inhibited in mTOR-Tg mice. In the ex vivo I/R model, mTOR-Tg hearts demonstrated improved functional recovery compared with WT hearts. Perfusion with Evans blue after ex vivo I/R yielded less staining in mTOR-Tg hearts than WT hearts, indicating that mTOR overexpression inhibited necrosis during I/R injury. Expression of proinflammatory cytokines, including IL-6 and TNF-α, in mTOR-Tg hearts was lower than in WT hearts. Consistent with this, IL-6 in the effluent post-I/R injury was lower in mTOR-Tg hearts than in WT hearts. These findings suggest that cardiac mTOR overexpression in the heart is sufficient to provide substantial cardioprotection against I/R injury and suppress the inflammatory response.


Assuntos
Traumatismo por Reperfusão Miocárdica/prevenção & controle , Serina-Treonina Quinases TOR/fisiologia , Animais , Autofagia , Western Blotting , Vasos Coronários/fisiologia , DNA/genética , DNA/isolamento & purificação , Fibrose , Técnicas In Vitro , Inflamação/genética , Inflamação/patologia , Ligadura , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos , Isquemia Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Necrose , Perfusão , Reação em Cadeia da Polimerase em Tempo Real , Serina-Treonina Quinases TOR/genética , Ultrassonografia
2.
Resuscitation ; 82(1): 115-21, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20951489

RESUMO

STUDY AIMS: Cardiac arrest mortality is significantly affected by failure to obtain return of spontaneous circulation (ROSC) despite cardiopulmonary resuscitation (CPR). Severe myocardial dysfunction and cardiovascular collapse further affects mortality within hours of initial ROSC. Recent work suggests that enhancement of nitric oxide (NO) signaling within minutes of CPR can improve myocardial function and survival. We studied the role of NO signaling on cardiovascular outcomes following cardiac arrest and resuscitation using endothelial NO synthase knockout (NOS3(-/-)) mice. METHODS: Adult female wild-type (WT) and NOS3(-/-) mice were anesthetized, intubated, and instrumented with left-ventricular pressure-volume catheters. Cardiac arrest was induced with intravenous potassium chloride. CPR was performed after 8min of untreated arrest. ROSC rate, cardiac function, whole-blood nitrosylhemoglobin (HbNO) concentrations, heart NOS3 content and phosphorylation (p-NOS3), cyclic guanosine monophosphate (cGMP), and phospho-troponin I (p-TnI) were measured. RESULTS: Despite equal quality CPR, NOS3(-/-) mice displayed lower rates of ROSC compared to WT (47.6% [10/21] vs. 82.4% [14/17], p<0.005). Among ROSC animals, NOS3(-/-) vs. WT mice exhibited increased left-ventricular dysfunction and 120min mortality. Prior to ROSC, myocardial effectors of NO signaling including cGMP and p-TnI were decreased in NOS3(-/-) vs. WT mice (p<0.05). Following ROSC in WT mice, significant NOS3-dependent increases in circulating HbNO were seen by 120min. Significant increases in cardiac p-NOS3 occurred between end-arrest and 15min post-ROSC, while total NOS3 content was increased by 120min post-ROSC (p<0.05). CONCLUSIONS: Genetic deletion of NOS3 decreases ROSC rate and worsens post-ROSC left-ventricular function. Poor cardiovascular outcomes are associated with differences in NOS3-dependent myocardial cGMP signaling and circulating NO metabolites.


Assuntos
DNA/genética , Deleção de Genes , Parada Cardíaca/genética , Óxido Nítrico Sintase Tipo III/genética , Disfunção Ventricular Esquerda/genética , Animais , Western Blotting , Reanimação Cardiopulmonar/métodos , Modelos Animais de Doenças , Feminino , Parada Cardíaca/enzimologia , Parada Cardíaca/terapia , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/enzimologia , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA