RESUMO
CD19-targeted chimeric antigen receptor T (CAR-T) cell therapy has shown unprecedented results in patients with B cell relapsed/refractory acute lymphoblastic leukemia (R/R-ALL) and B cell non-Hodgkin lymphomas where no other curative options are available. In vivo monitoring of CAR-T cell kinetics is fundamental to understand the correlation between CAR-T cells expansion and persistence with treatment response and toxicity development. The aim of this study was to define a robust, sensitive, and universal method for CAR-T cell detection using flow cytometry. We set up and compared with each other three assays for CD19 CAR-T cell detection, all based on commercially available reagents. All methods used a recombinant human CD19 protein fragment recognized by the single-chain variable fragment of the CAR construct. The two indirect staining assays (CD19his + APC-conjugated antihistidine antibody and CD19bio + APC-conjugated antibiotin antibody) showed better sensitivity and specificity compared with the direct staining with CD19-FITC, and CD19his had a better cost-effective profile. We validated CAR detection with CD19his with parallel quantitative real-time polymerase chain reaction data and we could demonstrate a strong positive correlation. We also showed that CD19his staining can be easily included in a multicolor flow cytometry panel to achieve additional information about the cell phenotype of CAR-T cell positive subpopulations. Finally, this method can be used for different anti-CD19 CAR-T cell products and for different sample sources. These data demonstrate that detection of CAR-T cells by CD19his flow cytometry staining is a reliable, robust, and broadly applicable tool for in vivo monitoring of CAR-T cells.
Assuntos
Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Citometria de Fluxo/métodos , Imunoterapia Adotiva/métodos , Antígenos CD19 , Anticorpos , Linfócitos TRESUMO
SIGNIFICANCE STATEMENT: Mesenchymal stromal cells (MSCs) may offer a novel therapy for diabetic kidney disease (DKD), although clinical translation of this approach has been limited. The authors present findings from the first, lowest dose cohort of 16 adults with type 2 diabetes and progressive DKD participating in a randomized, placebo-controlled, dose-escalation phase 1b/2a trial of next-generation bone marrow-derived, anti-CD362 antibody-selected allogeneic MSCs (ORBCEL-M). A single intravenous (iv) infusion of 80×10 6 cells was safe and well-tolerated, with one quickly resolved infusion reaction in the placebo group and no subsequent treatment-related serious adverse events (SAEs). Compared with placebo, the median annual rate of decline in eGFR was significantly lower with ORBCEL-M, although mGFR did not differ. The results support further investigation of ORBCEL-M in this patient population in an appropriately sized phase 2b study. BACKGROUND: Systemic therapy with mesenchymal stromal cells may target maladaptive processes involved in diabetic kidney disease progression. However, clinical translation of this approach has been limited. METHODS: The Novel Stromal Cell Therapy for Diabetic Kidney Disease (NEPHSTROM) study, a randomized, placebo-controlled phase 1b/2a trial, assesses safety, tolerability, and preliminary efficacy of next-generation bone marrow-derived, anti-CD362-selected, allogeneic mesenchymal stromal cells (ORBCEL-M) in adults with type 2 diabetes and progressive diabetic kidney disease. This first, lowest dose cohort of 16 participants at three European sites was randomized (3:1) to receive intravenous infusion of ORBCEL-M (80×10 6 cells, n =12) or placebo ( n =4) and was followed for 18 months. RESULTS: At baseline, all participants were negative for anti-HLA antibodies and the measured GFR (mGFR) and estimated GFR were comparable between groups. The intervention was safe and well-tolerated. One placebo-treated participant had a quickly resolved infusion reaction (bronchospasm), with no subsequent treatment-related serious adverse events. Two ORBCEL-M recipients died during follow-up of causes deemed unrelated to the trial intervention; one recipient developed low-level anti-HLA antibodies. The median annual rate of kidney function decline after ORBCEL-M therapy compared with placebo did not differ by mGFR, but was significantly lower by eGFR estimated by the Chronic Kidney Disease Epidemiology Collaboration and Modification of Diet in Renal Disease equations. Immunologic profiling provided evidence of preservation of circulating regulatory T cells, lower natural killer T cells, and stabilization of inflammatory monocyte subsets in those receiving the cell therapy compared with placebo. CONCLUSIONS: Findings indicate safety and tolerability of intravenous ORBCEL-M cell therapy in the trial's lowest dose cohort. The rate of decline in eGFR (but not mGFR) over 18 months was significantly lower among those receiving cell therapy compared with placebo. Further studies will be needed to determine the therapy's effect on CKD progression. CLINICAL TRIAL REGISTRATION NUMBER: ClinicalTrial.gov NCT02585622 .
Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Células-Tronco Mesenquimais , Insuficiência Renal Crônica , Adulto , Humanos , Nefropatias Diabéticas/terapia , Diabetes Mellitus Tipo 2/complicações , Taxa de Filtração GlomerularRESUMO
Our center performs experimental clinical studies with advanced therapy medicinal products (ATMPs) based on polyclonal T cells, all of which are currently expanded in standard T-flasks. Given the need to increase the efficiency and safety of large-scale T cell expansion for clinical use, we have optimized the method to expand in G-Rex devices both cytokine-induced killer cells (CIKs) from peripheral or cord blood and blinatumomab-expanded T cells (BETs). We show that the G-Rex reproducibly allowed the expansion of >30 × 106 CD3+ cells/cm2 of gas-permeable membrane in a mean of 10 to 11 days in a single unit, without manipulation, except for addition of cytokines and sampling of supernatant for lactate measurement every 3 to 4 days. In contrast, 21 to 24 days, twice-weekly cell resuspension and dilution into 48 to 72 T-flasks were required to complete expansions using the standard method. We show that the CIKs produced in G-Rex (CIK-G) were phenotypically very similar, for a large panel of markers, to those expanded in T-flasks, although CIK-G products had lower expression of CD56 and higher expression of CD27 and CD28. Functionally, CIK-Gs were strongly cytotoxic in vitro against the NK cell target K562 and the REH pre-B ALL cell line in the presence of blinatumomab. CIK-Gs also showed therapeutic activity in vivo in the Ph+ pre-B ALL-2 model in mice. The expansion of both CIKs and BETs in G-Rex was validated in good manufacturing practices (GMP) conditions, and we plan to use G-Rex for T cell expansion in future clinical studies.
Assuntos
Células Matadoras Induzidas por Citocinas , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Animais , Proliferação de Células , Citotoxicidade Imunológica , Células Matadoras Naturais , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Linfócitos TRESUMO
BACKGROUND AIMS: Advanced therapy medicinal products (ATMPs) are novel drugs based on genes, cells or tissues developed to treat many different diseases. Stability studies of each new ATMP need to be performed to define its shelf life and guarantee efficacy and safety upon infusion, and these are presently based on guidelines originally drafted for standard pharmaceutical drugs, which have properties and are stored in conditions quite different from cell products. The aim of this report is to provide evidence-based information for stability studies on ATMPs that will facilitate the interlaboratory harmonization of practices in this area. METHODS: We have collected and analyzed the results of stability studies on 19 different cell-based experimental ATMPs, produced by five authorized cell factories forming the Lombardy "Plagencell network" for use in 36 approved phase I/II clinical trials; most were cryopreserved and stored in liquid nitrogen vapors for 1 to 13 years. RESULTS: The cell attributes collected in stability studies included cell viability, immunophenotype and potency assays, in particular immunosuppression, cytotoxicity, cytokine release and proliferation/differentiation capacity. Microbiological attributes including sterility, endotoxin levels and mycoplasma contamination were also analyzed. All drug products (DPs), cryopreserved in various excipients containing 10% DMSO and in different primary containers, were very stable long term at <-150°C and did not show any tendency for diminished viability or efficacy for up to 13.5 years. CONCLUSIONS: Our data indicate that new guidelines for stability studies, specific for ATMPs and based on risk analyses, should be drafted to harmonize practices, significantly reduce the costs of stability studies without diminishing safety. Some specific suggestions are presented in the discussion.
Assuntos
Criopreservação , Diferenciação Celular , Sobrevivência Celular , ImunofenotipagemRESUMO
Mesenchymal stromal cells (MSC) have emerged as a promising therapy to minimize the immunosuppressive regimen or induce tolerance in solid organ transplantation. In this randomized open-label phase Ib/IIa clinical trial, 20 liver transplant patients were randomly allocated (1:1) to receive a single pretransplant intravenous infusion of third-party bone marrow-derived MSC or standard of care alone. The primary endpoint was the safety profile of MSC administration during the 1-year follow-up. In all, 19 patients completed the study, and none of those who received MSC experienced infusion-related complications. The incidence of serious and non-serious adverse events was similar in the two groups. Circulating Treg/memory Treg and tolerant NK subset of CD56bright NK cells increased slightly over baseline, albeit not to a statistically significant extent, in MSC-treated patients but not in the control group. Graft function and survival, as well as histologic parameters and intragraft expression of tolerance-associated transcripts in 1-year protocol biopsies were similar in the two groups. In conclusion, pretransplant MSC infusion in liver transplant recipients was safe and induced mild positive changes in immunoregulatory T and NK cells in the peripheral blood. This study opens the way for a trial on possible tolerogenic efficacy of MSC in liver transplantation. ClinicalTrials.gov identifier: NCT02260375.
Assuntos
Transplante de Fígado , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Medula Óssea , Humanos , ImunossupressoresRESUMO
We have identified a rare healthy FcγRIIIB (CD16B)-null donor completely lacking FCGR3B RNA and protein expression and dissected the role of the different neutrophil Fcγ receptors in the response to therapeutic anti-CD20 monoclonal antibodies. We observed that polymorphonuclear neutrophils (PMNs) from FcγRIIIB wild-type (WT) individuals or the null donor were more effectively activated by chronic lymphocytic leukemia (CLL) B-cell targets opsonized with glycoengineered anti-CD20 antibodies compared with fully core-fucosylated anti-CD20 antibodies, suggesting the presence and role of FcγRIIIA (CD16A) on PMNs. Indeed, we demonstrated by reverse-transcription polymerase chain reaction, flow cytometry, and western blot analysis that PMNs from FcγRIIIB WT donors and the null individual express low levels of FcγRIIIA on their surfaces. FcγRIIIA is a functional and activating molecule on these cells, because anti-CD16 F(ab')2 antibodies alone were able to activate highly purified PMNs from the FcγRIIIB-null donor. Use of blocking anti-CD16 and anti-CD32 antibodies showed that FcγRIIIA is also a major mediator of phagocytosis of CD20-opsonized beads by FcγRIIIB WT and null PMNs. In contrast, trogocytosis of antibody-opsonized CLL B cells by PMNs was mediated primarily by FcγRIIIB in WT PMNs and by FcγRIIA in null PMNs. We conclude that FcγRIIIA is an important player in PMN functions, whereas FcγRIIIB is dispensable for activation and phagocytosis. We discuss the clinical implications of these findings.
Assuntos
Deleção de Genes , Neutrófilos/imunologia , Receptores de IgG/genética , Células Cultivadas , Expressão Gênica , Humanos , Imunoglobulina G/imunologia , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/imunologia , Neutrófilos/metabolismo , Fagocitose , RNA Mensageiro/genética , Receptores de IgG/imunologiaRESUMO
The successful implementation of chimeric antigen receptor (CAR)-T cell therapy in the clinical context of B cell malignancies has paved the way for further development in the more critical setting of acute myeloid leukemia (AML). Among the potentially targetable AML antigens, CD33 is insofar one of the main validated molecules. Here, we describe the feasibility of engineering cytokine-induced killer (CIK) cells with a CD33.CAR by using the latest optimized version of the non-viral Sleeping Beauty (SB) transposon system "SB100X-pT4." This offers the advantage of improving CAR expression on CIK cells, while reducing the amount of DNA transposase as compared to the previously employed "SB11-pT" version. SB-modified CD33.CAR-CIK cells exhibited significant antileukemic activity in vitro and in vivo in patient-derived AML xenograft models, reducing AML development when administered as an "early treatment" and delaying AML progression in mice with established disease. Notably, by exploiting an already optimized xenograft chemotherapy model that mimics human induction therapy in mice, we demonstrated for the first time that CD33.CAR-CIK cells are also effective toward chemotherapy resistant/residual AML cells, further supporting its future clinical development and implementation within the current standard regimens.
Assuntos
Engenharia Celular/métodos , Transplante de Células/métodos , Células Matadoras Induzidas por Citocinas/imunologia , Resistencia a Medicamentos Antineoplásicos , Terapia Genética/métodos , Xenoenxertos , Imunoterapia Adotiva/métodos , Leucemia Experimental/terapia , Leucemia Mieloide Aguda/terapia , Receptores de Antígenos Quiméricos/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Animais , Estudos de Viabilidade , Técnicas de Transferência de Genes , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células THP-1 , Transposases/genética , Transposases/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Polymorphonuclear neutrophils (PMNs) have previously been reported to mediate phagocytosis of anti-CD20-opsonized B cells from patients with chronic lymphocytic leukemia (CLL). However, recent data have suggested that PMNs, like macrophages, can also mediate trogocytosis. We have performed experiments to more precisely investigate this point and to discriminate between trogocytosis and phagocytosis. In live-cell time-lapse microscopy experiments, we could not detect any significant phagocytosis by purified PMNs of anti-CD20-opsonized CLL B cells, but could detect only the repeated close contact between effectors and targets, which suggested trogocytosis. Similarly, in flow cytometry assays using CLL B-cell targets labeled with the membrane dye PKH67 and opsonized with rituximab or obinutuzumab, we observed that a mean of 50% and 75% of PMNs had taken a fraction of the dye from CLL B cells at 3 and 20 hours, respectively, with no significant decrease in absolute live or total CLL B-cell numbers, confirming that trogocytosis occurs, rather than phagocytosis. Trogocytosis was accompanied by loss of membrane CD20 from CLL B cells, which was evident with rituximab but not obinutuzumab. We conclude that PMNs mediate mostly trogocytosis rather than phagocytosis of anti-CD20-opsonized CLL B cells, and we discuss the implications of this finding in patients with CLL treated with rituximab or obinutuzumab in vivo.
Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Leucemia Linfocítica Crônica de Células B/imunologia , Neutrófilos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Rituximab/farmacologia , Antígenos CD20/imunologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Neutrófilos/imunologia , Neutrófilos/patologiaRESUMO
The immunosuppressive properties of mesenchymal stromal cells (MSC) have been successfully tested to control clinical severe graft-versus host disease and improve survival. However, clinical studies have not yet provided conclusive evidence of their efficacy largely because of lack of patients' stratification criteria. The heterogeneity of MSC preparations is also a major contributing factor, as manufacturing of therapeutic MSC is performed according to different protocols among different centers. Understanding the variability of the manufacturing protocol would allow a better comparison of the results obtained in the clinical setting among different centers. In order to acquire information on MSC manufacturing we sent a questionnaire to the European Society for Blood and Marrow Transplantation centers registered as producing MSC. Data from 17 centers were obtained and analyzed by means of a 2-phase questionnaire specifically focused on product manufacturing. Gathered information included MSC tissue sources, MSC donor matching, medium additives for ex vivo expansion, and data on MSC product specification for clinical release. The majority of centers manufactured MSC from bone marrow (88%), whilst only 2 centers produced MSC from umbilical cord blood or cord tissue. One of the major changes in the manufacturing process has been the replacement of fetal bovine serum with human platelet lysate as medium supplement. 59% of centers used only third-party MSC, whilst only 1 center manufactured exclusively autologous MSC. The large majority of these facilities (71%) administered MSC exclusively from frozen batches. Aside from variations in the culture method, we found large heterogeneity also regarding product specification, particularly in the markers used for phenotypical characterization and their threshold of expression, use of potency assays to test MSC functionality, and karyotyping. The initial data collected from this survey highlight the variability in MSC manufacturing as clinical products and the need for harmonization. Until more informative potency assays become available, a more homogeneous approach to cell production may at least reduce variability in clinical trials and improve interpretation of results.
Assuntos
Doença Enxerto-Hospedeiro/terapia , Células-Tronco Mesenquimais/metabolismo , Europa (Continente) , Doença Enxerto-Hospedeiro/patologia , Humanos , Células-Tronco Mesenquimais/citologia , Inquéritos e QuestionáriosRESUMO
BACKGROUND: Cytokine-induced killer cells (CIKs) are an advanced therapeutic medicinal product (ATMP) that has shown therapeutic activity in clinical trials but needs optimization. We developed a novel strategy using CIKs from banked cryopreserved cord blood units (CBUs) combined with bispecific antibody (BsAb) blinatumomab to treat CD19+ malignancies. METHODS: CB-CIKs were expanded in vitro and fully characterized in comparison with peripheral blood (PB)-derived CIKs. RESULTS: CB-CIKs, like PB-CIKs, were mostly CD3+ T cells with mean 45% CD3+CD56+ and expressing mostly TCR(T cell receptor)αß with a TH1 phenotype. CB-CIK cultures had, however, a larger proportion of CD4+ cells, mostly CD56-, as well as a greater proportion of naïve CCR7+CD45RA+ and a lower percentage of effector memory cells, compared with PB-CIKs. CB-CIKs were very similar to PB-CIKs in their expression of a large panel of co-stimulatory and inhibitory/exhaustion markers, except for higher CD28 expression among CD8+ cells. Like PB-CIKs, CB-CIKs were highly cytotoxic in vitro against natural killer (NK) cell targets and efficiently lysed CD19+ tumor cells in the presence of blinatumomab, with 30-60% lysis of target cells at very low effector:target ratios. Finally, both CB-CIKs and PB-CIKs, combined with blinatumomab, showed significant therapeutic activity in an aggressive PDX Ph+ CD19+ acute lymphoblastic leukemia model in NOD-SCID mice, without sign of toxicity or graft-versus-host disease. The improved expansion protocol was finally validated in good manufacturing practice conditions, showing reproducible expansion of CIKs from cryopreserved cord blood units with a median of 28.8â¯×â¯106 CIK/kg. DISCUSSION: We conclude that CB-CIKs, combined with bispecific T-cell-engaging antibodies, offer a novel, effective treatment strategy for leukemia.
Assuntos
Anticorpos Biespecíficos/uso terapêutico , Células Matadoras Induzidas por Citocinas/citologia , Células Matadoras Induzidas por Citocinas/transplante , Sangue Fetal/citologia , Neoplasias/terapia , Animais , Antígenos CD19/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/transplante , Terapia Combinada , Células Matadoras Induzidas por Citocinas/imunologia , Citotoxicidade Imunológica/efeitos dos fármacos , Citotoxicidade Imunológica/fisiologia , Feminino , Sangue Fetal/imunologia , Humanos , Imunoterapia Adotiva/métodos , Recém-Nascido , Células K562 , Células Matadoras Naturais/citologia , Células Matadoras Naturais/transplante , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Neoplasias/metabolismo , Neoplasias/patologia , Resultado do TratamentoRESUMO
BACKGROUND: We analyzed the results of routine sterility testing performed in our center over the last 10 years, in the context both hematopoietic stem cell transplantation (HSCT) and Advanced Therapeutic Medicinal Products (ATMPs). METHODS: For sterility tests 14-day cultures were performed in culture media detecting aerobic and anaerobic microorganisms. RESULTS: In this study, 22/1643 (1.3%) of apheretic products for autologous or allogeneic HSCT were contaminated, whereas 14/73 bone marrow (BM) harvests (17.8%) were positive. In 22 cases, the contaminated HSCs were infused to patients, but there was no evidence of any adverse impact of contamination on the hematologic engraftment or on infections. Indeed none of the five positive hemocultures detected in patients following infusion could be linked to the contaminated stem cell product. Our Cell Factory also generated 286 ATMPs in good manufacturing practice (GMP) conditions since 2007 and all final products were sterile. In three cases of mesenchymal stromal cell expansions, the starting BM harvests were contaminated, but the cell products at the end of expansion were sterile, presumably thanks to the presence of an antibiotic in the culture medium. DISCUSSION: The decreased rate of contamination of cell harvests observed with time suggests that routine sterility testing and communication of the results to the collecting centers may improve clinical practices. Furthermore, we recommend the use of antibiotics in the medium for ATMP expansion, to decrease the likelihood of expanding microorganisms within clean rooms. Finally we discuss the costs of sterility testing of ATMPs by GMP-approved external laboratories.
Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Esterilização/métodos , Remoção de Componentes Sanguíneos , Meios de Cultura , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Esterilização/economia , Fatores de TempoRESUMO
Cytokine-induced killer (CIK) cells are T lymphocytes that have acquired, in vitro, following extensive manipulation by Interferon gamma (IFN-γ), OKT3 and Interleukin 2 (IL-2) addition, the expression of several Natural Killer (NK) cell-surface markers. CIK cells have a dual "nature", due to the presence of functional TCR as well as NK molecules, even if the antitumoral activity can be traced back only to the NK-like structures (DNAM-1, NKG2D, NKp30 and CD56). In addition to antineoplastic activity in vitro and in several in-vivo models, CIK cells show very limited, if any, GvHD toxicity as well as a strong intratumoral homing. For all such reasons, CIK cells have been proposed and tested in many clinical trials in cancer patients both in autologous and allogeneic combinations, up to haploidentical mismatching. Indeed, genetic modification of CIK cells as well as the possibility of combining them with specific monoclonal antibodies will further expand the possibility of their clinical utilization.
Assuntos
Células Matadoras Induzidas por Citocinas/imunologia , Imunoterapia/métodos , Neoplasias/terapia , Animais , Células Matadoras Induzidas por Citocinas/citologia , Humanos , Neoplasias/imunologiaRESUMO
Seventy-four patients who relapsed after allogeneic stem cell transplantation were enrolled in a phase IIA study and treated with the sequential infusion of donor lymphocyte infusion (DLI) followed by cytokine-induced killer (CIK) cells. Seventy-three patients were available for the intention to treat analysis. At least 1 infusion of CIK cells was given to 59 patients, whereas 43 patients received the complete cell therapy planned (58%). Overall, 12 patients (16%) developed acute graft-versus-host disease (aGVHD) of grades I to II in 7 cases and grades III to IV in 5). In 8 of 12 cases, aGVHD developed during DLI treatment, leading to interruption of the cellular program in 3 patients, whereas in the remaining 5 cases aGVHD was controlled by steroids treatment, thus allowing the subsequent planned administration of CIK cells. Chronic GVHD (cGVHD) was observed in 11 patients (15%). A complete response was observed in 19 (26%), partial response in 3 (4%), stable disease in 8 (11%), early death in 2 (3%), and disease progression in 41 (56%). At 1 and 3 years, rates of progression-free survival were 31% and 29%, whereas rates of overall survival were 51% and 40%, respectively. By multivariate analysis, the type of relapse, the presence of cGVHD, and a short (<6 months) time from allogeneic hematopoietic stem cell transplantation to relapse were the significant predictors of survival. In conclusion, a low incidence of GVHD is observed after the sequential administration of DLI and CIK cells, and disease control can be achieved mostly after a cytogenetic or molecular relapse.
Assuntos
Células Matadoras Induzidas por Citocinas/transplante , Transplante de Células-Tronco Hematopoéticas/métodos , Transfusão de Linfócitos/métodos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Humanos , Transfusão de Linfócitos/efeitos adversos , Masculino , Pessoa de Meia-Idade , Prognóstico , Recidiva , Indução de Remissão , Análise de Sobrevida , Transplante Homólogo , Resultado do Tratamento , Adulto JovemRESUMO
On November 10, 2014, the representatives of all six certified Good Manufacturing Practices (GMP) cell factories operating in the Lombardy Region of Italy convened a 1-day workshop in Milan titled "Management Models for the Development And Sustainability of Cell Factories: Public-Private Partnership?" The speakers and panelists addressed not only the many scientific, technological and cultural challenges faced by Lombardy Cell Factories, but also the potential impact of advanced therapy medicinal products (ATMPs) on public health and the role played by translational research in this process. Future perspectives for research and development (R&D) and manufacturing processes in the field of regenerative medicine were discussed as well. This report summarizes the most important issues raised by the workshop participants with particular emphasis on strengths and limitations of the R&D and manufacturing processes for innovative therapeutics in Lombardy and what can be improved in this context while maintaining GMP standards. The participants highlighted several strategies to translate patient-specific advanced therapeutics into scaled manufacturing products for clinical application. These included (i) the development of a synergistic interaction between public and private institutions, (ii) better integration with Italian regulatory agencies and (iii) the creation of a network among Lombardy cell factories and other Italian and European institutions.
Assuntos
Técnicas de Cultura de Células , Engenharia Celular , Laboratórios/organização & administração , Modelos Organizacionais , Terapias em Estudo , Pesquisa Biomédica/métodos , Pesquisa Biomédica/organização & administração , Pesquisa Biomédica/normas , Biotecnologia/organização & administração , Biotecnologia/normas , Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/normas , Engenharia Celular/métodos , Engenharia Celular/normas , Humanos , Itália , Avaliação de Programas e Projetos de Saúde/normas , Melhoria de Qualidade , Terapias em Estudo/métodos , Terapias em Estudo/normasRESUMO
Current treatment of chronic lymphocytic leukemia (CLL) patients often results in life-threatening immunosuppression. Furthermore, CLL is still an incurable disease due to the persistence of residual leukemic cells. These patients may therefore benefit from immunotherapy approaches aimed at immunoreconstitution and/or the elimination of residual disease following chemotherapy. For these purposes, we designed a simple GMP-compliant protocol for ex vivo expansion of normal T cells from CLL patients' peripheral blood for adoptive therapy, using bispecific Ab blinatumomab (CD3 × CD19), acting both as T cell stimulator and CLL depletion agent, and human rIL-2. Starting from only 10 ml CLL peripheral blood, a mean 515 × 10(6) CD3(+) T cells were expanded in 3 wk. The resulting blinatumomab-expanded T cells (BET) were polyclonal CD4(+) and CD8(+) and mostly effector and central memory cells. The Th1 subset was slightly prevalent over Th2, whereas Th17 and T regulatory cells were <1%. CMV-specific clones were detected in equivalent proportion before and after expansion. Interestingly, BET cells had normalized expression of the synapse inhibitors CD272 and CD279 compared with starting T cells and were cytotoxic against CD19(+) targets in presence of blinatumomab in vitro. In support of their functional capacity, we observed that BET, in combination with blinatumomab, had significant therapeutic activity in a systemic human diffuse large B lymphoma model in NOD-SCID mice. We propose BET as a therapeutic tool for immunoreconstitution of heavily immunosuppressed CLL patients and, in combination with bispecific Ab, as antitumor immunotherapy.
Assuntos
Anticorpos Biespecíficos/farmacologia , Técnicas de Cultura de Células , Imunoterapia Adotiva , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Animais , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Humanos , Imunofenotipagem , Interleucina-2/farmacologia , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/mortalidade , Leucemia Linfocítica Crônica de Células B/terapia , Camundongos , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , Subpopulações de Linfócitos T/metabolismoRESUMO
Obinutuzumab (GA101) is a glycoengineered type 2 CD20 antibody with enhanced CD16A-binding and natural killer-mediated cytotoxicity. CD16B is highly homologous to CD16A and a major FcγR on human polymorphonuclear neutrophils (PMNs). We show here that glycoengineered obinutuzumab or rituximab bound CD16B with approximately sevenfold higher affinity, compared with nonglycoengineered wild-type parental antibodies. Furthermore, glycoengineered obinutuzumab activated PMNs, either purified or in chronic lymphoblastic leukemia whole blood, more efficiently than wild-type rituximab. Activation resulted in a 50% increase in CD11b expression and 70% down-modulation of CD62L on neutrophils and in release of tumor necrosis factor alpha, IL-6, and IL-8. Activation was not accompanied by generation of reactive oxygen species or antibody-dependent cellular cytotoxicity activity, but led to up to 47% phagocytosis of glycoengineered anti-CD20 opsonized chronic lymphoblastic leukemia targets by purified PMNs. Significant phagocytosis was observed in whole blood, but only in the presence of glycoengineered antibodies, and was followed by up to 50% PMN death. Finally we show, using anti-CD16B and anti-CD32A Fab and F(ab')2 fragments, that both of these receptors are involved in PMN activation, phagocytosis, and cell death induced by glycoengineered antibodies. We conclude that phagocytosis by PMNs is an additional mechanism of action of obinutuzumab mediated through its higher binding affinity for CD16B.
Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Murinos/farmacologia , Ativação de Neutrófilo/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Receptores de IgG/imunologia , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacologia , Afinidade de Anticorpos , Antígenos CD20/imunologia , Antígeno CD11b/biossíntese , Antígeno CD11b/genética , Fucose , Proteínas Ligadas por GPI/imunologia , Glicosilação , Hirudinas/farmacologia , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Selectina L/biossíntese , Selectina L/genética , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/imunologia , Engenharia de Proteínas , Isoformas de Proteínas/imunologia , Proteínas Recombinantes/farmacologia , Rituximab , Ressonância de Plasmônio de Superfície , Fator de Necrose Tumoral alfa/metabolismo , Regulação para CimaRESUMO
The novel Bruton tyrosine kinase inhibitor ibrutinib and phosphatidyl-4-5-biphosphate 3-kinase-δ inhibitor idelalisib are promising drugs for the treatment of chronic lymphocytic leukemia and B-cell non-Hodgkin lymphoma, either alone or in combination with anti-CD20 antibodies. We investigated the possible positive or negative impact of these drugs on all known mechanisms of action of both type I and type II anti-CD20 antibodies. Pretreatment with ibrutinib for 1 hour did not increase direct cell death of cell lines or chronic lymphocytic leukemia samples mediated by anti-CD20 antibodies. Pre-treatment with ibrutinib did not inhibit complement activation or complement-mediated lysis. In contrast, ibrutinib strongly inhibited all cell-mediated mechanisms induced by anti-CD20 antibodies rituximab, ofatumumab or obinutuzumab, either in purified systems or whole blood assays. Activation of natural killer cells, and antibody-dependent cellular cytotoxicity by these cells, as well as phagocytosis by macrophages or neutrophils were inhibited by ibrutinib with a half maximal effective concentration of 0.3-3 µM. Analysis of anti-CD20 mediated activation of natural killer cells isolated from patients on continued oral ibrutinib treatment suggested that repeated drug dosing inhibits these cells in vivo. Finally we show that the phosphatidyl-4-5-biphosphate 3-kinase-δ inhibitor idelalisib similarly inhibited the immune cell-mediated mechanisms induced by anti-CD20 antibodies, although the effects of this drug at 10 µM were weaker than those observed with ibrutinib at the same concentration. We conclude that the design of combined treatment schedules of anti-CD20 antibodies with these kinase inhibitors should consider the multiple negative interactions between these two classes of drugs.
Assuntos
Anticorpos Monoclonais/farmacologia , Citotoxicidade Celular Dependente de Anticorpos , Antígenos CD20/imunologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Linfoma de Células B/tratamento farmacológico , Purinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinazolinonas/farmacologia , Adenina/análogos & derivados , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/efeitos dos fármacos , Western Blotting , Estudos de Casos e Controles , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ativação do Complemento/efeitos dos fármacos , Citometria de Fluxo , Imunofluorescência , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , PiperidinasRESUMO
Ofatumumab (OFA) is a human anti-CD20 Ab approved for treatment of fludarabine-refractory B chronic lymphocytic leukemia (B-CLL). The efficacy of different immunotherapeutic strategies is best investigated in conditions that are as physiologic as possible. We have therefore compared the activity OFA and rituximab (RTX), alone or in combination with chemotherapeutic agents in unmanipulated whole blood assays, using flow cytometry. OFA (10-100 µg/ml) lysed B-CLL targets in whole blood more efficiently and with faster kinetics than RTX, with a mean 56% lysis at 24 h compared with 16%. This activity of OFA was fully complement dependent, as shown by >99% inhibition by anti-C5 Ab eculizumab and a lack of NK cell activation in whole blood. OFA-mediated NK cell activation was blocked by complement. OFA-mediated lysis could be increased an additional 15% by blocking CD55 and CD59 complement inhibitors. Interestingly, OFA-mediated lysis correlated significantly with CD20 expression levels (r(2) = 0.79). OFA showed overlapping dose response curves similar to those for RTX in phagocytosis assays using either human macrophages or neutrophils. However, phagocytosis was inhibited in the presence of serum or whole blood. Finally, combined treatment with mafosfamide and fludarabine showed that these therapeutic drugs are synergistic in B-CLL whole blood assays and show superior activity when combined with OFA compared with RTX. These results confirm in B-CLL samples and in physiologic conditions the superior complement mediated cytotoxicity induced by OFA alone compared with RTX, the lack of NK cell activation, and phagocytosis in these conditions and suggest effective chemoimmunotherapy strategies using this new generation anti-CD20 Ab.
Assuntos
Anticorpos Monoclonais Murinos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Testes Imunológicos de Citotoxicidade/métodos , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/patologia , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais Murinos/administração & dosagem , Anticorpos Monoclonais Murinos/sangue , Antígenos CD20/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/sangue , Morte Celular/imunologia , Ativação do Complemento/imunologia , Relação Dose-Resposta Imunológica , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Rituximab , Células Tumorais CultivadasRESUMO
We explored the molecular mechanisms involved in the establishement of CMA-03/06, an IL-6-independent variant of the multiple myeloma cell line CMA-03 previously generated in our Institution. CMA-03/06 cells grow in the absence of IL-6 with a doubling time comparable with that of CMA-03 cells; neither the addition of IL6 (IL-6) to the culture medium nor co-culture with multipotent mesenchymal stromal cells increases the proliferation rate, although they maintain the responsiveness to IL-6 stimulation as demonstrated by STAT1, STAT3, and STAT5 induction. IL-6 independence of CMA-03/06 cells is not apparently due to the development of an autocrine IL-6 loop, nor to the observed moderate constitutive activation of STAT5 and STAT3, since STAT3 silencing does not affect cell viability or proliferation. When compared to the parental cell line, CMA-03/06 cells showed an activated pattern of the NF-κB pathway. This finding is supported by gene expression profiling (GEP) analysis identifying an appreciable fraction of modulated genes (28/308) in the CMA-03/06 subclone reported to be involved in this pathway. Furthermore, although more resistant to apoptotic stimuli compared to the parental cell line, CMA-03/06 cells display a higher sensibility to NF-κB inhibition induced by bortezomib. Finally, GEP analysis suggests an involvement of a number of cytokines, which might contribute to IL-6 independence of CMA-03/06 by stimulating growth and antiapoptotic processes. In conclusion, the parental cell-line CMA-03 and its variant CMA-03/06 represent a suitable model to further investigate molecular mechanisms involved in the IL-6-independent growth of myeloma cells.
Assuntos
Linhagem Celular Tumoral/metabolismo , Interleucina-6/metabolismo , Mieloma Múltiplo/metabolismo , Apoptose , Ácidos Borônicos/farmacologia , Bortezomib , Linhagem Celular Tumoral/patologia , Humanos , Interleucina-6/genética , Interleucina-6/farmacologia , Sistema de Sinalização das MAP Quinases , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Pirazinas/farmacologia , Transdução de Sinais , TranscriptomaRESUMO
PURPOSE OF REVIEW: The aim of the present review was to give a critical opinion on the use of mesenchymal stromal cells (MSCs) to treat or to prevent graft-versus-host disease (GVHD). RECENT FINDINGS: The first part includes a summary of the many clinical trials published so far either to prevent or to treat GVHD in recipients of haematopoietic stem cell transplantation. We discuss in more detail a comparison in a subgroup of studies, including our own clinical work, which have in common the use of the platelet lysate to expand the MSCs from bone marrow origin.In the second part, we describe a few crucial elements of the biology of the GVHD and the biology of the MSCs themselves, showing their possible role in the immune modulation and in the inflammation in several in-vivo experimental models. SUMMARY: The complexity of the clinical condition that is the object of the trials and the paucity of information on the mechanisms of action in vivo of MSCs at different anatomical sites and in different times of the development of the disease preclude at the moment the identification of a strong rationale for MSC therapeutic schedule. Moreover, the typical development of GVHD requires different time points of clinical evaluation than those previously generally utilized in studies conducted on MSCs.