Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Cancer ; 17(1): 434, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28633655

RESUMO

BACKGROUND: Retinoblastoma (Rb) is the most common primary intraocular tumor in children. Local treatment of the intraocular disease is usually effective if diagnosed early; however advanced Rb can metastasize through routes that involve invasion of the choroid, sclera and optic nerve or more broadly via the ocular vasculature. Metastatic Rb patients have very high mortality rates. While current therapy for Rb is directed toward blocking tumor cell division and tumor growth, there are no specific treatments targeted to block Rb metastasis. Two such targets are matrix metalloproteinases-2 and -9 (MMP-2, -9), which degrade extracellular matrix as a prerequisite for cellular invasion and have been shown to be involved in other types of cancer metastasis. Cancer Clinical Trials with an anti-MMP-9 therapeutic antibody were recently initiated, prompting us to investigate the role of MMP-2, -9 in Rb metastasis. METHODS: We compare MMP-2, -9 activity in two well-studied Rb cell lines: Y79, which exhibits high metastatic potential and Weri-1, which has low metastatic potential. The effects of inhibitors of MMP-2 (ARP100) and MMP-9 (AG-L-66085) on migration, angiogenesis, and production of immunomodulatory cytokines were determined in both cell lines using qPCR, and ELISA. Cellular migration and potential for invasion were evaluated by the classic wound-healing assay and a Boyden Chamber assay. RESULTS: Our results showed that both inhibitors had differential effects on the two cell lines, significantly reducing migration in the metastatic Y79 cell line and greatly affecting the viability of Weri-1 cells. The MMP-9 inhibitor (MMP9I) AG-L-66085, diminished the Y79 angiogenic response. In Weri-1 cells, VEGF was significantly reduced and cell viability was decreased by both MMP-2 and MMP-9 inhibitors. Furthermore, inhibition of MMP-2 significantly reduced secretion of TGF-ß1 in both Rb models. CONCLUSIONS: Collectively, our data indicates MMP-2 and MMP-9 drive metastatic pathways, including migration, viability and secretion of angiogenic factors in Rb cells. These two subtypes of matrix metalloproteinases represent new potential candidates for targeted anti-metastatic therapy for Rb.


Assuntos
Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Neovascularização Patológica/tratamento farmacológico , Retinoblastoma/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Inibidores de Metaloproteinases de Matriz/administração & dosagem , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Retinoblastoma/genética , Retinoblastoma/patologia , Fator A de Crescimento do Endotélio Vascular/genética
2.
Invest Ophthalmol Vis Sci ; 59(11): 4486-4495, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30193324

RESUMO

Purpose: Vitreous seeding remains the primary reason for treatment failure in eyes with retinoblastoma (Rb). Systemic and intra-arterial chemotherapy, each with its own inherent set of complications, have improved salvage rates for eyes with advanced disease, but the location and biology of vitreous seeds present a fundamental challenge in developing treatments with minimal toxicity and risk. The aim of this study was to target the platelet-derived growth factor (PDGF)- PDGF-receptor ß (PDGFRß) signaling pathway and investigate its role in the growth of Rb seeds, apoptotic activity, and invasive potential. Methods: We performed ex vivo analyses on vitreous samples from Rb patients that underwent enucleation and from patient-derived xenografts. These samples were evaluated by quantitative PCR, immunohistochemistry, and ELISA. The effects of disruption of the PDGF-PDGFRß signaling pathway, both by pharmacologic and genomic knockdown approaches, were evaluated in vitro by cell proliferation and apoptotic assays, quantitative PCR analyses, Western blotting, flow cytometry, and imaging flow cytometry. A three-dimensional cell culture system was generated for in-depth study of Rb seeds. Results: Our results demonstrated that PDGFRß signaling is active in the vitreous of Rb patients and patient-derived xenografts, sustaining growth and survival in an AKT-, MDM2-, and NF-κB-dependent manner. The novel three-dimensional cell culture system mimics Rb seeds, as the in vitro generated spheroids have similar morphologic features to Rb seeds and mimicked their natural physiology. Conclusions: Targeting the PDGFRß pathway in vitro reduces Rb cell growth, survival, and invasiveness and could augment current therapies. This represents a novel signaling pathway for potential targeted therapy to further improve ocular survival in advanced Rb.


Assuntos
Antineoplásicos/uso terapêutico , Mesilato de Imatinib/uso terapêutico , Inoculação de Neoplasia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Neoplasias da Retina/tratamento farmacológico , Retinoblastoma/tratamento farmacológico , Corpo Vítreo/metabolismo , Western Blotting , Técnicas de Cultura de Células , Sistemas de Liberação de Medicamentos , Ensaio de Imunoadsorção Enzimática , Enucleação Ocular , Citometria de Fluxo , Humanos , Imuno-Histoquímica , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Retinoblastoma/metabolismo , Retinoblastoma/patologia , Estudos Retrospectivos , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA