Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Immunol ; 203(4): 888-898, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31292217

RESUMO

Genome-wide association studies have mapped the specific sequence variants that predispose for multiple sclerosis (MS). The pathogenic mechanisms that underlie these associations could be leveraged to develop safer and more effective MS treatments but are still poorly understood. In this article, we study the genetic risk variant rs17066096 and the candidate gene that encodes IL-22 binding protein (IL-22BP), an antagonist molecule of the cytokine IL-22. We show that monocytes from carriers of the risk genotype of rs17066096 express more IL-22BP in vitro and cerebrospinal fluid levels of IL-22BP correlate with MS lesion load on magnetic resonance imaging. We confirm the pathogenicity of IL-22BP in both rat and mouse models of MS and go on to suggest a pathogenic mechanism involving lack of IL-22-mediated inhibition of T cell-derived IFN-γ expression. Our results demonstrate a pathogenic role of IL-22BP in three species with a potential mechanism of action involving T cell polarization, suggesting a therapeutic potential of IL-22 in the context of MS.


Assuntos
Predisposição Genética para Doença/genética , Esclerose Múltipla/genética , Receptores de Interleucina/genética , Animais , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Genótipo , Humanos , Ativação Linfocitária/imunologia , Camundongos , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Polimorfismo de Nucleotídeo Único , Ratos , Linfócitos T/imunologia
2.
Neurobiol Dis ; 132: 104582, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31445162

RESUMO

There are no approved drug therapies that can prevent or slow the progression of Parkinson's disease (PD). Accumulation and aggregation of α-synuclein protein is observed throughout the nervous system in PD. α-Synuclein is a core component of Lewy bodies and neurites that neuropathologically define PD, suggesting that α-synuclein may be a key causative agent in PD. Recent experimental data suggest that PD progression may arise due to spreading of pathological forms of extracellular α-synuclein throughout the brain via a cellular release, uptake and seeding mechanism. We have developed a high affinity α-synuclein antibody, MEDI1341, that can enter the brain, sequester extracellular α-synuclein and attenuate α-synuclein spreading in vivo. MEDI1341 binds both monomeric and aggregated forms of α-synuclein. In vitro, MEDI1341 blocks cell-to-cell transmission of pathologically relevant α-synuclein preformed fibrils (pffs). After intravenous injection into rats and cynomolgus monkeys, MEDI1341 rapidly enters the central nervous system and lowers free extracellular α-synuclein levels in the interstitial fluid (ISF) and cerebrospinal fluid (CSF) compartments. Using a novel lentiviral-based in vivo mouse model of α-synuclein spreading in the brain, we show that treatment with MEDI1341 significantly reduces α-synuclein accumulation and propagation along axons. In this same model, we demonstrate that an effector-null version of the antibody was equally as effective as one with effector function. MEDI1341 is now in Phase 1 human clinical trial testing as a novel treatment for α-synucleinopathies including PD with the aim to slow or halt disease progression.


Assuntos
Anticorpos Monoclonais/farmacologia , Encéfalo/efeitos dos fármacos , alfa-Sinucleína/antagonistas & inibidores , Animais , Especificidade de Anticorpos , Humanos , Macaca fascicularis , Camundongos , Ratos
3.
Toxicol Appl Pharmacol ; 355: 147-155, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30008375

RESUMO

Fibroblast Growth Factors (FGFs) and their receptors (FGFRs) have been proposed as potential drug targets for the treatment of obesity. The aim of this study was to assess the potential toxicity in rats of three anti-FGFR1c mAbs with differential binding activity prior to clinical development. Groups of male rats received weekly injections of either one of two FGFR1c-specific mAbs or an FGFR1c/FGFR4-specific mAb at 10 mg/kg for up to 4 weeks. All three mAbs caused significant reductions in food intake and weight loss leading to some animals being euthanized early for welfare reasons. In all three groups given these mAbs, microscopic changes were seen in the bones and heart valves. In the bones of the femoro-tibial joint, thickening of the diaphyseal cortex of long bones, due to deposition of well organized new lamellar bone, indicated that an osteogenic effect was observed. In the heart, valvulopathy described as an endocardial myxomatous change affecting the mitral, pulmonary, tricuspid and aortic valves was observed in all mAb-treated animals. The presence of FGFR1 mRNA expression in the heart valves was confirmed using in situ hybridization. Targeting the FGF-FGFR1c pathway with anti-FGFR1c mAbs leads to drug induced valvulopathy in rats. In effect, this precluded the development of these mAbs as potential anti-obesity drugs. The valvulopathy observed was similar to that described for fenfluramine and dexafenfluramine. The pathogenesis of the drug-induced valvulopathy is considered FGFR1c-mediated, based on the specificity of the mAbs and FGFR1 mRNA expression in the heart valves.


Assuntos
Fármacos Antiobesidade/toxicidade , Anticorpos Monoclonais/toxicidade , Doenças das Valvas Cardíacas/induzido quimicamente , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/efeitos dos fármacos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/efeitos dos fármacos , Animais , Fármacos Antiobesidade/farmacocinética , Anticorpos Monoclonais/farmacocinética , Osso e Ossos/patologia , Ingestão de Alimentos/efeitos dos fármacos , Doenças das Valvas Cardíacas/metabolismo , Doenças das Valvas Cardíacas/patologia , Valvas Cardíacas/metabolismo , Valvas Cardíacas/patologia , Masculino , Osteogênese/efeitos dos fármacos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar , Redução de Peso/efeitos dos fármacos
4.
Microbiol Spectr ; : e0040024, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940542

RESUMO

We used phage display, antibody engineering, and high-throughput assays to identify antibody-accessible targets of Klebsiella pneumoniae. We report the discovery of monoclonal antibodies (mAbs) binding to type 3 fimbrial proteins, including MrkA. We found that anti-MrkA mAbs were cross-reactive to a diverse panel of K. pneumoniae clinical isolates, representing different O-serotypes. mAbs binding to MrkA have previously been described and have been shown to provide prophylactic protection, although only modest protection when dosed therapeutically in vivo in a murine lung infection model. Here, we used a combination of binding and opsonophagocytic killing studies using a high-content imaging platform to provide a possible explanation for the modest therapeutic efficacy in vivo reported in that model. Our work shows that expression of K. pneumoniae type 3 fimbriae in in vitro culture is not homogenous within a bacterial population. Instead, sub-populations of bacteria that do, and do not, express type 3 fimbriae exist. In a high-content opsonophagocytic killing assay, we showed that MrkA-targeting antibodies initially promote killing by macrophages; however, over time, this effect is diminished. We hypothesize the reason for this is that bacteria not expressing MrkA can evade opsonophagocytosis. Our data support the fact that MrkA is a conserved, immunodominant protein that is antibody accessible on the surface of K. pneumoniae and suggest that additional studies should evaluate the potential of using anti-MrkA antibodies in different stages of K. pneumoniae infection (different sites in the body) as well as against K. pneumoniae biofilms in the body during infection and associated with medical devices.IMPORTANCEThere is an unmet, urgent need for the development of novel antimicrobial therapies for the treatment of Klebsiella pneumoniae infections. We describe the use of phage display, antibody engineering, and high-throughput assays to identify antibody-accessible targets of K. pneumoniae. We discovered monoclonal antibodies (mAbs) binding to the type 3 fimbrial protein MrkA. The anti-MrkA mAbs were found to be highly cross-reactive, binding to all K. pneumoniae strains tested from a diverse panel of clinical isolates, and were active in an opsonophagocytic killing assay at pM concentrations. MrkA is important for biofilm formation; thus, our data support further exploration of the use of anti-MrkA antibodies for preventing and/or controlling K. pneumoniae in biofilms and during infection.

5.
MAbs ; 14(1): 2095701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799328

RESUMO

Although monoclonal antibodies have greatly improved cancer therapy, they can trigger side effects due to on-target, off-tumor toxicity. Over the past decade, strategies have emerged to successfully mask the antigen-binding site of antibodies, such that they are only activated at the relevant site, for example, after proteolytic cleavage. However, the methods for designing an ideal affinity-based mask and what parameters are important are not yet well understood. Here, we undertook mechanistic studies using three masks with different properties and identified four critical factors: binding site and affinity, as well as association and dissociation rate constants, which also played an important role. HDX-MS was used to identify the location of binding sites on the antibody, which were subsequently validated by obtaining a high-resolution crystal structure for one of the mask-antibody complexes. These findings will inform future designs of optimal affinity-based masks for antibodies and other therapeutic proteins.


Assuntos
Anticorpos Monoclonais , Anticorpos Monoclonais/química , Afinidade de Anticorpos , Sítios de Ligação
6.
MAbs ; 14(1): 2006123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34923908

RESUMO

The increasing global occurrence of recalcitrant multi-drug resistant Klebsiella pneumoniae infections warrants the investigation of alternative therapy options, such as the use of monoclonal antibodies (mAbs). We used a target-agnostic phage display approach to K. pneumoniae bacteria lacking bulky, highly variable surface polysaccharides in order to isolate antibodies targeting conserved epitopes among clinically relevant strains. One antibody population contained a high proportion of unique carbohydrate binders, and biolayer interferometry revealed these antibodies bound to lipopolysaccharide (LPS). Antibodies that bound to O1 and O1/O2 LPS were identified. Antibodies were found to promote opsonophagocytic killing by human monocyte-derived macrophages and clearance of macrophage-associated bacteria when assessed using high-content imaging. One antibody, B39, was found to protect mice in a lethal model of K. pneumoniae pneumonia against both O1 and O2 strains when dosed therapeutically. High-content imaging, western blotting and fluorescence-activated cell sorting were used to determine binding to a collection of clinical K. pneumoniae O1 and O2 strains. The data suggests B39 binds to D-galactan-I and D-galactan-II of the LPS of O1 and O2 strains. Thus, we have discovered an mAb with novel binding and functional activity properties that is a promising candidate for development as a novel biotherapeutic for the treatment and prevention of K. pneumoniae infections.


Assuntos
Anticorpos Antibacterianos/imunologia , Epitopos/imunologia , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Animais , Farmacorresistência Bacteriana Múltipla/genética , Farmacorresistência Bacteriana Múltipla/imunologia , Epitopos/genética , Humanos , Infecções por Klebsiella/genética , Klebsiella pneumoniae/genética , Lipopolissacarídeos/genética , Camundongos , Opsonização
7.
Cancer Discov ; 11(5): 1100-1117, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33419761

RESUMO

The clinical benefit of PD-1 blockade can be improved by combination with CTLA4 inhibition but is commensurate with significant immune-related adverse events suboptimally limiting the doses of anti-CTLA4 mAb that can be used. MEDI5752 is a monovalent bispecific antibody designed to suppress the PD-1 pathway and provide modulated CTLA4 inhibition favoring enhanced blockade on PD-1+ activated T cells. We show that MEDI5752 preferentially saturates CTLA4 on PD-1+ T cells versus PD-1- T cells, reducing the dose required to elicit IL2 secretion. Unlike conventional PD-1/CTLA4 mAbs, MEDI5752 leads to the rapid internalization and degradation of PD-1. Moreover, we show that MEDI5752 preferentially localizes and accumulates in tumors providing enhanced activity when compared with a combination of mAbs targeting PD-1 and CTLA4 in vivo. Following treatment with MEDI5752, robust partial responses were observed in two patients with advanced solid tumors. MEDI5752 represents a novel immunotherapy engineered to preferentially inhibit CTLA4 on PD-1+ T cells. SIGNIFICANCE: The unique characteristics of MEDI5752 represent a novel immunotherapy engineered to direct CTLA4 inhibition to PD-1+ T cells with the potential for differentiated activity when compared with current conventional mAb combination strategies targeting PD-1 and CTLA4. This molecule therefore represents a step forward in the rational design of cancer immunotherapy.See related commentary by Burton and Tawbi, p. 1008.This article is highlighted in the In This Issue feature, p. 995.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma de Células Claras/tratamento farmacológico , Antígeno CTLA-4/metabolismo , Humanos , Imunoterapia , Neoplasias Renais/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Linfócitos T/imunologia
8.
PLoS One ; 9(11): e112109, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25427253

RESUMO

We have generated a novel monoclonal antibody targeting human FGFR1c (R1c mAb) that caused profound body weight and body fat loss in diet-induced obese mice due to decreased food intake (with energy expenditure unaltered), in turn improving glucose control. R1c mAb also caused weight loss in leptin-deficient ob/ob mice, leptin receptor-mutant db/db mice, and in mice lacking either the melanocortin 4 receptor or the melanin-concentrating hormone receptor 1. In addition, R1c mAb did not change hypothalamic mRNA expression levels of Agrp, Cart, Pomc, Npy, Crh, Mch, or Orexin, suggesting that R1c mAb could cause food intake inhibition and body weight loss via other mechanisms in the brain. Interestingly, peripherally administered R1c mAb accumulated in the median eminence, adjacent arcuate nucleus and in the circumventricular organs where it activated the early response gene c-Fos. As a plausible mechanism and coinciding with the initiation of food intake suppression, R1c mAb induced hypothalamic expression levels of the cytokines Monocyte chemoattractant protein 1 and 3 and ERK1/2 and p70 S6 kinase 1 activation.


Assuntos
Anticorpos Monoclonais/farmacologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Órgãos Circunventriculares/efeitos dos fármacos , Intolerância à Glucose/tratamento farmacológico , Hipotálamo/efeitos dos fármacos , Obesidade/tratamento farmacológico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/fisiopatologia , Quimiocina CCL2/agonistas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL7/agonistas , Quimiocina CCL7/genética , Quimiocina CCL7/metabolismo , Órgãos Circunventriculares/metabolismo , Órgãos Circunventriculares/fisiopatologia , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético , Feminino , Regulação da Expressão Gênica , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Intolerância à Glucose/fisiopatologia , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Leptina/deficiência , Leptina/genética , Camundongos , Camundongos Knockout , Camundongos Obesos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Obesidade/genética , Obesidade/metabolismo , Obesidade/fisiopatologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 4 de Melanocortina/deficiência , Receptor Tipo 4 de Melanocortina/genética , Receptores de Somatostatina/deficiência , Receptores de Somatostatina/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fator de Resposta Sérica/agonistas , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA