Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2025): 20240714, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889783

RESUMO

Extreme heat poses a major threat to plants and pollinators, yet the indirect consequences of heat stress are not well understood, particularly for native solitary bees. To determine how brief exposure of extreme heat to flowering plants affects bee behaviour, fecundity, development and survival we conducted a no-choice field cage experiment in which Osmia lignaria were provided blueberry (Vaccinium corymbosum), phacelia (Phacelia tanacetifolia) and white clover (Trifolium repens) that had been previously exposed to either extreme heat (37.5°C) or normal temperatures (25°C) for 4 h during early bloom. Despite a similar number of open flowers and floral visitation frequency between the two treatments, female bees provided with heat-stressed plants laid approximately 70% fewer eggs than females provided with non-stressed plants. Their progeny received similar quantities of pollen provisions between the two treatments, yet larvae consuming pollen from heat-stressed plants had significantly lower survival as larvae and adults. We also observed trends for delayed emergence and reduced adult longevity when larvae consumed heat-stressed pollen. This study is the first to document how short, field-realistic bursts of extreme heat exposure to flowering host plants can indirectly affect bee pollinators and their offspring, with important implications for crop pollination and native bee populations.


Assuntos
Fertilidade , Polinização , Animais , Abelhas/fisiologia , Feminino , Calor Extremo/efeitos adversos , Temperatura Alta , Longevidade , Pólen
2.
PLoS Genet ; 17(7): e1009677, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34237075

RESUMO

Pyrethrum extract from dry flowers of Tanacetum cinerariifolium (formally Chrysanthemum cinerariifolium) has been used globally as a popular insect repellent against arthropod pests for thousands of years. However, the mechanistic basis of pyrethrum repellency remains unknown. In this study, we found that pyrethrum spatially repels and activates olfactory responses in Drosophila melanogaster, a genetically tractable model insect, and the closely-related D. suzukii which is a serious invasive fruit crop pest. The discovery of spatial pyrethrum repellency and olfactory response to pyrethrum in D. melanogaster facilitated our identification of four odorant receptors, Or7a, Or42b, Or59b and Or98a that are responsive to pyrethrum. Further analysis showed that the first three Ors are activated by pyrethrins, the major insecticidal components in pyrethrum, whereas Or98a is activated by (E)-ß-farnesene (EBF), a sesquiterpene and a minor component in pyrethrum. Importantly, knockout of Or7a, Or59b or Or98a individually abolished fly avoidance to pyrethrum, while knockout of Or42b had no effect, demonstrating that simultaneous activation of Or7a, Or59b and Or98a is required for pyrethrum repellency in D. melanogaster. Our study provides insights into the molecular basis of repellency of one of the most ancient and globally used insect repellents. Identification of pyrethrum-responsive Ors opens the door to develop new synthetic insect repellent mixtures that are highly effective and broad-spectrum.


Assuntos
Chrysanthemum cinerariifolium/metabolismo , Repelentes de Insetos/química , Receptores Odorantes/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Flores , Repelentes de Insetos/metabolismo , Inseticidas/química , Odorantes/análise , Piretrinas/química , Piretrinas/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/fisiologia , Sesquiterpenos/química
3.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875596

RESUMO

Ecological restoration is a global priority, with potential to reverse biodiversity declines and promote ecosystem functioning. Yet, successful restoration is challenged by lingering legacies of past land-use activities, which are pervasive on lands available for restoration. Although legacies can persist for centuries following cessation of human land uses such as agriculture, we currently lack understanding of how land-use legacies affect entire ecosystems, how they influence restoration outcomes, or whether restoration can mitigate legacy effects. Using a large-scale experiment, we evaluated how restoration by tree thinning and land-use legacies from prior cultivation and subsequent conversion to pine plantations affect fire-suppressed longleaf pine savannas. We evaluated 45 ecological properties across four categories: 1) abiotic attributes, 2) organism abundances, 3) species diversity, and 4) species interactions. The effects of restoration and land-use legacies were pervasive, shaping all categories of properties, with restoration effects roughly twice the magnitude of legacy effects. Restoration effects were of comparable magnitude in savannas with and without a history of intensive human land use; however, restoration did not mitigate numerous legacy effects present prior to restoration. As a result, savannas with a history of intensive human land use supported altered properties, especially related to soils, even after restoration. The signature of past human land-use activities can be remarkably persistent in the face of intensive restoration, influencing the outcome of restoration across diverse ecological properties. Understanding and mitigating land-use legacies will maximize the potential to restore degraded ecosystems.


Assuntos
Agricultura/tendências , Recuperação e Remediação Ambiental/métodos , Biodiversidade , Ecossistema , Pradaria , Humanos , Pinus/crescimento & desenvolvimento , Dinâmica Populacional , Solo/química , Estresse Fisiológico , Árvores/crescimento & desenvolvimento
4.
Proc Biol Sci ; 288(1947): 20210212, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33726596

RESUMO

While an increasing number of studies indicate that the range, diversity and abundance of many wild pollinators has declined, the global area of pollinator-dependent crops has significantly increased over the last few decades. Crop pollination studies to date have mainly focused on either identifying different guilds pollinating various crops, or on factors driving spatial changes and turnover observed in these communities. The mechanisms driving temporal stability for ecosystem functioning and services, however, remain poorly understood. Our study quantifies temporal variability observed in crop pollinators in 21 different crops across multiple years at a global scale. Using data from 43 studies from six continents, we show that (i) higher pollinator diversity confers greater inter-annual stability in pollinator communities, (ii) temporal variation observed in pollinator abundance is primarily driven by the three-most dominant species, and (iii) crops in tropical regions demonstrate higher inter-annual variability in pollinator species richness than crops in temperate regions. We highlight the importance of recognizing wild pollinator diversity in agricultural landscapes to stabilize pollinator persistence across years to protect both biodiversity and crop pollination services. Short-term agricultural management practices aimed at dominant species for stabilizing pollination services need to be considered alongside longer term conservation goals focussed on maintaining and facilitating biodiversity to confer ecological stability.


Assuntos
Ecossistema , Polinização , Agricultura , Animais , Abelhas , Biodiversidade , Produtos Agrícolas , Insetos
5.
Ecol Lett ; 23(2): 326-335, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31797535

RESUMO

Supporting ecosystem services and conserving biodiversity may be compatible goals, but there is concern that service-focused interventions mostly benefit a few common species. We use a spatially replicated, multiyear experiment in four agricultural settings to test if enhancing habitat adjacent to crops increases wild bee diversity and abundance on and off crops. We found that enhanced field edges harbored more taxonomically and functionally abundant, diverse, and compositionally different bee communities compared to control edges. Enhancements did not increase the abundance or diversity of bees visiting crops, indicating that the supply of pollination services was unchanged following enhancement. We find that actions to promote crop pollination improve multiple dimensions of biodiversity, underscoring their conservation value, but these benefits may not be spilling over to crops. More work is needed to identify the conditions that promote effective co-management of biodiversity and ecosystem services.


Assuntos
Biodiversidade , Ecossistema , Agricultura , Animais , Abelhas , Produtos Agrícolas , Polinização
6.
Ecol Lett ; 23(10): 1488-1498, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32808477

RESUMO

Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services. However, a comprehensive assessment of the effectiveness of different floral plantings, their characteristics and consequences for crop yield is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control (18 studies) and pollination services (17 studies) in adjacent crops in North America, Europe and New Zealand. Flower strips, but not hedgerows, enhanced pest control services in adjacent fields by 16% on average. However, effects on crop pollination and yield were more variable. Our synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively. These findings provide promising pathways to optimise floral plantings to more effectively contribute to ecosystem service delivery and ecological intensification of agriculture in the future.


Assuntos
Ecossistema , Polinização , Agricultura , Abelhas , Biodiversidade , Europa (Continente) , Flores , Nova Zelândia , América do Norte , Controle de Pragas
7.
Oecologia ; 193(2): 511-522, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32495034

RESUMO

Plant-pollinator interactions are partially driven by the expression of plant traits that signal and attract bees to the nutritional resources within flowers. Although multiple physical and chemical floral traits are known to influence the visitation patterns of bees, how distinct bee groups vary in their responses to floral traits has yet to be elucidated. In this study, we used a common garden experiment to test for morphological floral traits associated with pollen quantity at the plant species level, and examined how the visitation patterns of taxonomically and functionally distinct bee groups are related to flower trait characteristics of 39 wildflower species. We also determined how floral traits influence the structure of wild bee communities visiting plants and whether this varies among geographic localities. Our results suggest that floral area is the primary morphological floral trait related to bee visitation of several distinct bee groups, but that wild bee families and functionally distinct bee groups have unique responses to floral trait expression. The composition of the wild bee communities visiting different plants was most strongly associated with variability in floral area, flower height, and the quantity of pollen retained in flowers. Our results inform wildflower habitat management for bees by demonstrating that the visitation patterns of distinct bee taxa can be predicted by floral traits, and highlight that variability in these traits should be considered when selecting plants to support pollinators.


Assuntos
Flores , Polinização , Animais , Abelhas , Fenótipo , Plantas , Pólen
8.
Annu Rev Entomol ; 64: 95-114, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30629894

RESUMO

Blueberry is a crop native to North America with expanding production and consumption worldwide. In the historical regions of production, integrated pest management (IPM) programs have been developed and provided effective control of key insect pests. These have integrated monitoring programs with physical, cultural, biological, behavioral, and chemical controls to meet the intense demands of consumers and modern food systems. Globalization of the blueberry industry has resulted in new pest-crop associations and the introduction of invasive pests into existing and new blueberry-growing areas. Invasive pests-in particular spotted wing drosophila-have been highly disruptive to traditional IPM programs, resulting in increased use of insecticides and the potential to disrupt beneficial insects. Moreover, regulatory agencies have reduced the number of broad-spectrum insecticides available to growers while facilitating registration and adoption of reduced-risk insecticides that have a narrower spectrum of activity. Despite these new tools, increasing international trade has constrained insecticide use because of maximum residue limits, which are often not standardized across countries. Great potential remains for biological, behavioral, cultural, and physical methods to contribute to blueberry IPM, and with more regions investing in blueberry research, we expect regionally relevant IPM programs to develop in the new production regions.


Assuntos
Mirtilos Azuis (Planta) , Controle de Insetos , Insetos , Animais , Internacionalidade
9.
Ecol Appl ; 29(2): e01828, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30412332

RESUMO

Conversion of annual crops to native perennial grasslands for bioenergy production may help conserve wild bees by enhancing nest and food resources. However, bee response to the disturbance of biomass harvesting may depend on their nesting location, thus their vulnerability to nest destruction, and the response of the forb community on which they forage. Moreover, because bees have long foraging ranges, effects of local harvesting may depend on the amount of natural habitat in the surrounding landscape. We performed a large-scale one- and two-year experiment in Michigan and Wisconsin, USA, respectively, to examine how grassland harvesting, landscape context, and study year affect the forb community, above- and belowground-nesting bee species richness, community composition, trap nest emergence, and visitation rate. In Wisconsin, harvesting increased forb richness, cover, and evenness compared to unharvested control sites. Harvesting negatively affected aboveground-nesting bee richness and emergence from trap nests, possibly because of nest destruction during the previous harvest. By contrast, harvesting positively affected belowground-nesting bee richness, possibly because of the greater food resource availability and reduced thatch allowing greater access to nesting sites in the soil. Harvesting also affected bee community composition, reflecting the increase in belowground-nesting species at harvested sites. Despite harvesting effects on forb and bee communities, there was no effect on flower visitation rate, indicating little effect on pollination function. We did not find a harvest by landscape context interaction, which, in combination with the negative harvesting effect on trap nest emergence, suggests that harvesting can affect local population growth rather than simply affecting forager aggregation in different resource environments. For bees, there was no harvest by study year interaction, indicating a consistent response over a short timescale. Similarly, in Michigan, belowground-nesting species also responded positively to harvesting, which was more pronounced in sandier soils that are preferred for nesting. However, other components of the Michigan bee and forb communities were not significantly affected by biomass harvesting. Overall, our study demonstrates that harvesting grasslands can positively affect the ~80% of bee species that nest belowground by enhancing nest and/or forage resources, but that conserving aboveground nesters may require leaving some area unharvested.


Assuntos
Pradaria , Polinização , Animais , Abelhas , Flores , Michigan , Wisconsin
11.
Proc Natl Acad Sci U S A ; 113(1): 140-5, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26699460

RESUMO

Wild bees are highly valuable pollinators. Along with managed honey bees, they provide a critical ecosystem service by ensuring stable pollination to agriculture and wild plant communities. Increasing concern about the welfare of both wild and managed pollinators, however, has prompted recent calls for national evaluation and action. Here, for the first time to our knowledge, we assess the status and trends of wild bees and their potential impacts on pollination services across the coterminous United States. We use a spatial habitat model, national land-cover data, and carefully quantified expert knowledge to estimate wild bee abundance and associated uncertainty. Between 2008 and 2013, modeled bee abundance declined across 23% of US land area. This decline was generally associated with conversion of natural habitats to row crops. We identify 139 counties where low bee abundances correspond to large areas of pollinator-dependent crops. These areas of mismatch between supply (wild bee abundance) and demand (cultivated area) for pollination comprise 39% of the pollinator-dependent crop area in the United States. Further, we find that the crops most highly dependent on pollinators tend to experience more severe mismatches between declining supply and increasing demand. These trends, should they continue, may increase costs for US farmers and may even destabilize crop production over time. National assessments such as this can help focus both scientific and political efforts to understand and sustain wild bees. As new information becomes available, repeated assessments can update findings, revise priorities, and track progress toward sustainable management of our nation's pollinators.


Assuntos
Abelhas/fisiologia , Produtos Agrícolas , Polinização , Animais , Fazendeiros , Humanos , Modelos Biológicos , Dinâmica Populacional , Estados Unidos
12.
J Insect Sci ; 19(4)2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31268546

RESUMO

Drosophila suzukii Matsumura (Diptera: Drosophilidae) is currently a major pest management challenge in berry and cherry production. This species has a winter morph phenotype with longer wings and increased melanization associated with survival in colder conditions. Measurements of wing morphology in Michigan D. suzukii collected during 2016 and 2017 showed that induction of this morph began in September and increased into December, correlated with decreasing temperature and day length. Importantly, we found that wing length increases along a continuous scale and there is overlap between the two morph types. We tested whether temperature or photoperiod elicited this phenotypic change using a factorial design with each preadult lifestage held at 10 or 25°C and 16:8 or 8:16 L:D. Our results support temperature as the main driver of transition to the winter morph for all immature stages. Comparing the reproductive capacity of winter morph flies in cold conditions and when previously acclimated to warm conditions, flies with the acclimation experience laid comparable numbers of eggs as the summer morphs at 25°C, indicating that winter morphs can reproduce after surviving cold periods. These results highlight the ability of D. suzukii to adapt to changing temperature conditions, allowing it to survive cold and also exploit warmer periods to build populations when conditions allow.


Assuntos
Aclimatação , Drosophila/fisiologia , Oviposição , Estações do Ano , Asas de Animais/anatomia & histologia , Animais , Drosophila/anatomia & histologia , Feminino , Masculino , Fenótipo , Fotoperíodo , Temperatura
13.
Annu Rev Entomol ; 63: 193-214, 2018 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-29324036

RESUMO

Viticulture has experienced dramatic global growth in acreage and value. As the international exchange of goods has increased, so too has the market demand for sustainably produced products. Both elements redefine the entomological challenges posed to viticulture and have stimulated significant advances in arthropod pest control programs. Vineyard managers on all continents are increasingly combating invasive species, resulting in the adoption of novel insecticides, semiochemicals, and molecular tools to support sustainable viticulture. At the local level, vineyard management practices consider factors such as the surrounding natural ecosystem, risk to fish populations, and air quality. Coordinated multinational responses to pest invasion have been highly effective and have, for example, resulted in eradication of the moth Lobesia botrana from California vineyards, a pest found in 2009 and eradicated by 2016. At the global level, the shared pests and solutions for their suppression will play an increasing role in delivering internationally sensitive pest management programs that respond to invasive pests, climate change, novel vector and pathogen relationships, and pesticide restrictions.


Assuntos
Proteção de Cultivos , Insetos , Espécies Introduzidas , Vitis , Animais , Controle Biológico de Vetores , Crescimento Sustentável
14.
Glob Chang Biol ; 23(11): 4946-4957, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28488295

RESUMO

Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.


Assuntos
Agricultura/métodos , Artrópodes , Biodiversidade , Ecossistema , Animais
15.
Proc Natl Acad Sci U S A ; 111(4): 1652-7, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24474791

RESUMO

Agriculture is being challenged to provide food, and increasingly fuel, for an expanding global population. Producing bioenergy crops on marginal lands--farmland suboptimal for food crops--could help meet energy goals while minimizing competition with food production. However, the ecological costs and benefits of growing bioenergy feedstocks--primarily annual grain crops--on marginal lands have been questioned. Here we show that perennial bioenergy crops provide an alternative to annual grains that increases biodiversity of multiple taxa and sustain a variety of ecosystem functions, promoting the creation of multifunctional agricultural landscapes. We found that switchgrass and prairie plantings harbored significantly greater plant, methanotrophic bacteria, arthropod, and bird diversity than maize. Although biomass production was greater in maize, all other ecosystem services, including methane consumption, pest suppression, pollination, and conservation of grassland birds, were higher in perennial grasslands. Moreover, we found that the linkage between biodiversity and ecosystem services is dependent not only on the choice of bioenergy crop but also on its location relative to other habitats, with local landscape context as important as crop choice in determining provision of some services. Our study suggests that bioenergy policy that supports coordinated land use can diversify agricultural landscapes and sustain multiple critical ecosystem services.


Assuntos
Biodiversidade , Conservação de Recursos Energéticos , Ecossistema , Poaceae , Animais
16.
Ecol Appl ; 25(8): 2119-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26910943

RESUMO

Global trends in pollinator-dependent crops have raised awareness of the need to support managed and wild bee populations to ensure sustainable crop production. Provision of sufficient forage resources is a key element for promoting bee populations within human impacted landscapes, particularly those in agricultural lands where demand for pollination service is high and land use and management practices have reduced available flowering resources. Recent government incentives in North America and Europe support the planting of wildflowers to benefit pollinators; surprisingly, in North America there has been almost no rigorous testing of the performance of wildflower mixes, or their ability to support wild bee abundance and diversity. We tested different wildflower mixes in a spatially replicated, multiyear study in three regions of North America where production of pollinator-dependent crops is high: Florida, Michigan, and California. In each region, we quantified flowering among wildflower mixes composed of annual and perennial species, and with high and low relative diversity. We measured the abundance and species richness of wild bees, honey bees, and syrphid flies at each mix over two seasons. In each region, some but not all wildflower mixes provided significantly greater floral display area than unmanaged weedy control plots. Mixes also attracted greater abundance and richness of wild bees, although the identity of best mixes varied among regions. By partitioning floral display size from mix identity we show the importance of display size for attracting abundant and diverse wild bees. Season-long monitoring also revealed that designing mixes to provide continuous bloom throughout the growing season is critical to supporting the greatest pollinator species richness. Contrary to expectation, perennials bloomed in their first season, and complementarity in attraction of pollinators among annuals and perennials suggests that inclusion of functionally diverse species may provide the greatest benefit. Wildflower mixes may be particularly important for providing resources for some taxa, such as bumble bees, which are known to be in decline in several regions of North America. No mix consistently attained the full diversity that was planted. Further study is needed on how to achieve the desired floral display and diversity from seed mixes.


Assuntos
Abelhas/fisiologia , Flores/fisiologia , Plantas/classificação , Agricultura , Animais , Animais Selvagens , Biodiversidade , Monitoramento Ambiental , Polinização/fisiologia , Estados Unidos
17.
J Econ Entomol ; 108(4): 1910-4, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26470334

RESUMO

Infestation by blueberry gall midge, Dasineura oxycoccana Johnson, is common in northern highbush blueberries, but its effects on crop productivity are unknown. We examined whether infestation by blueberry gall midge reduces flower bud production when compared with uninfested shoots, and how infestation at different times affects the crop response. From the fall of 2009 to the spring of 2011, the number of flower buds on infested and uninfested shoots of blueberry bushes was counted and compared. Despite causing branching of vegetative growth, there was no significant effect of infestation on flower bud production. During the summer of 2010, damaged shoots were marked throughout the growing season in June, July, or August. The number of flower buds set per shoot declined with later infestation dates, and shoots damaged in August had significantly fewer buds than those damaged in June and July. We discuss the implications of these findings for management of blueberry gall midge in northern highbush blueberry.


Assuntos
Dípteros/fisiologia , Animais , Mirtilos Azuis (Planta)/crescimento & desenvolvimento , Mirtilos Azuis (Planta)/fisiologia , Dípteros/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Flores/fisiologia , Larva/fisiologia , Michigan , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia
18.
J Econ Entomol ; 107(1): 277-85, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24665711

RESUMO

A series of bioassays were conducted to determine the relative toxicities and residual activities of insecticides labeled for use in blueberry (Vaccinium corymbosum L.) on natural enemies, to identify products with low toxicity or short duration effects on biological control agents. In total, 14 insecticides were evaluated using treated petri dishes and four commercially available natural enemies (Aphidius colemani Viereck, Orius insidiosus [Say], Chrysoperla rufilabris [Burmeister], and Hippodamia convergens [Guérin-Menéville]). Dishes were aged under greenhouse conditions for 0, 3, 7, or 14 d before introducing insects to test residual activity. Acute effects (combined mortality and knockdown) varied by insecticide, residue age, and natural enemy species. Broad-spectrum insecticides caused high mortality to all biocontrol agents, whereas products approved for use in organic agriculture had little effect. The reduced-risk insecticide acetamiprid consistently caused significant acute effects, even after aging for 14 d. Methoxyfenozide, novaluron, and chlorantraniliprole, which also are classified as reduced-risk insecticides, had low toxicity, and along with the organic products could be compatible with biological control. This study provides information to guide blueberry growers in their selection of insecticides. Further research will be needed to determine whether adoption of a pest management program based on the use of more selective insecticides will result in higher levels of biological control in blueberry.


Assuntos
Mirtilos Azuis (Planta) , Cadeia Alimentar , Insetos , Inseticidas , Resíduos de Praguicidas , Animais , Controle de Insetos , Testes de Toxicidade
19.
Sci Total Environ ; 922: 171248, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38402956

RESUMO

Wildflower plantings adjacent to agricultural fields provide diverse floral resources and nesting sites for wild bees. However, their proximity to pest control activities in the crop may result in pesticide exposure if pesticides drift into pollinator plantings. To quantify pesticide residues in pollinator plantings, we sampled flowers and soil from pollinator plantings and compared them to samples from unenhanced field margins and crop row middles. At conventionally managed farms, flowers from pollinator plantings had similar exposure profiles to those from unenhanced field margins or crop row middles, with multiple pesticides and high and similar risk quotient (RQ) values (with pollinator planting RQ: 3.9; without pollinator planting RQ: 4.0). Whereas samples from unsprayed sites had significantly lower risk (RQ: 0.005). Soil samples had overall low risk to bees. Additionally, we placed bumble bee colonies (Bombus impatiens) in field margins of crop fields with and without pollinator plantings and measured residues in bee-collected pollen. Pesticide exposure was similar in pollen from sites with or without pollinator plantings, and risk was generally high (with pollinator planting RQ: 0.5; without pollinator planting RQ: 1.1) and not significant between the two field types. Risk was lower at sites where there was no pesticide activity (RQ: 0.3), but again there was no significant difference between management types. The insecticide phosmet, which is used on blueberry farms for control of Drosophila suzukii, accounted for the majority of elevated risk. Additionally, analysis of pollen collected by bumble bees found no significant difference in floral species richness between sites with or without pollinator plantings. Our results suggest that pollinator plantings do not reduce pesticide risk and do not increase pollen diversity collected by B. impatiens, further highlighting the need to reduce exposure through enhanced IPM adoption, drift mitigation, and removal of attractive flowering weeds prior to insecticide applications.


Assuntos
Mirtilos Azuis (Planta) , Inseticidas , Praguicidas , Animais , Abelhas , Pólen , Solo , Polinização
20.
Ecol Lett ; 16(5): 584-99, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23489285

RESUMO

Bees provide essential pollination services that are potentially affected both by local farm management and the surrounding landscape. To better understand these different factors, we modelled the relative effects of landscape composition (nesting and floral resources within foraging distances), landscape configuration (patch shape, interpatch connectivity and habitat aggregation) and farm management (organic vs. conventional and local-scale field diversity), and their interactions, on wild bee abundance and richness for 39 crop systems globally. Bee abundance and richness were higher in diversified and organic fields and in landscapes comprising more high-quality habitats; bee richness on conventional fields with low diversity benefited most from high-quality surrounding land cover. Landscape configuration effects were weak. Bee responses varied slightly by biome. Our synthesis reveals that pollinator persistence will depend on both the maintenance of high-quality habitats around farms and on local management practices that may offset impacts of intensive monoculture agriculture.


Assuntos
Agricultura , Abelhas/fisiologia , Ecossistema , Modelos Teóricos , Polinização , Animais , Clima , Produtos Agrícolas , Flores , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA