Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34451101

RESUMO

Personal exposure to volatile organic compounds (VOCs) from indoor sources including consumer products is an understudied public health concern. To develop and evaluate methods for monitoring personal VOC exposures, we performed a pilot study and examined time-resolved sensor-based measurements of geocoded total VOC (TVOC) exposures across individuals and microenvironments (MEs). We integrated continuous (1 min) data from a personal TVOC sensor and a global positioning system (GPS) logger, with a GPS-based ME classification model, to determine TVOC exposures in four MEs, including indoors at home (Home-In), indoors at other buildings (Other-In), inside vehicles (In-Vehicle), and outdoors (Out), across 45 participant-days for five participants. To help identify places with large emission sources, we identified high-exposure events (HEEs; TVOC > 500 ppb) using geocoded TVOC time-course data overlaid on Google Earth maps. Across the 45 participant-days, the MEs ranked from highest to lowest median TVOC were: Home-In (165 ppb), Other-In (86 ppb), In-Vehicle (52 ppb), and Out (46 ppb). For the two participants living in single-family houses with attached garages, the median exposures for Home-In were substantially higher (209, 416 ppb) than the three participant homes without attached garages: one living in a single-family house (129 ppb), and two living in apartments (38, 60 ppb). The daily average Home-In exposures exceeded the estimated Leadership in Energy and Environmental Design (LEED) building guideline of 108 ppb for 60% of the participant-days. We identified 94 HEEs across all participant-days, and 67% of the corresponding peak levels exceeded 1000 ppb. The MEs ranked from the highest to the lowest number of HEEs were: Home-In (60), Other-In (13), In-Vehicle (12), and Out (9). For Other-In and Out, most HEEs occurred indoors at fast food restaurants and retail stores, and outdoors in parking lots, respectively. For Home-In HEEs, the median TVOC emission and removal rates were 5.4 g h-1 and 1.1 h-1, respectively. Our study demonstrates the ability to determine individual sensor-based time-resolved TVOC exposures in different MEs, in support of identifying potential sources and exposure factors that can inform exposure mitigation strategies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Sistemas de Informação Geográfica , Humanos , Projetos Piloto , Compostos Orgânicos Voláteis/análise
2.
Risk Anal ; 37(12): 2420-2434, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28244115

RESUMO

To quantify the on-road PM2.5 -related premature mortality at a national scale, previous approaches to estimate concentrations at a 12-km × 12-km or larger grid cell resolution may not fully characterize concentration hotspots that occur near roadways and thus the areas of highest risk. Spatially resolved concentration estimates from on-road emissions to capture these hotspots may improve characterization of the associated risk, but are rarely used for estimating premature mortality. In this study, we compared the on-road PM2.5 -related premature mortality in central North Carolina with two different concentration estimation approaches-(i) using the Community Multiscale Air Quality (CMAQ) model to model concentration at a coarser resolution of a 36-km × 36-km grid resolution, and (ii) using a hybrid of a Gaussian dispersion model, CMAQ, and a space-time interpolation technique to provide annual average PM2.5 concentrations at a Census-block level (∼105,000 Census blocks). The hybrid modeling approach estimated 24% more on-road PM2.5 -related premature mortality than CMAQ. The major difference is from the primary on-road PM2.5 where the hybrid approach estimated 2.5 times more primary on-road PM2.5 -related premature mortality than CMAQ due to predicted exposure hotspots near roadways that coincide with high population areas. The results show that 72% of primary on-road PM2.5 premature mortality occurs within 1,000 m from roadways where 50% of the total population resides, highlighting the importance to characterize near-road primary PM2.5 and suggesting that previous studies may have underestimated premature mortality due to PM2.5 from traffic-related emissions.


Assuntos
Mortalidade Prematura , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Feminino , Avaliação do Impacto na Saúde/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , North Carolina/epidemiologia , Material Particulado/análise , Medição de Risco/estatística & dados numéricos , Emissões de Veículos/análise
3.
Environ Model Softw ; 98: 21-34, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29681760

RESUMO

The Community model for near-PORT applications (C-PORT) is a screening tool with an intended purpose of calculating differences in annual averaged concentration patterns and relative contributions of various source categories over the spatial domain within about 10 km of the port. C-PORT can inform decision-makers and concerned citizens about local air quality due to mobile source emissions related to commercial port activities. It allows users to visualize and evaluate different planning scenarios, helping them identify the best alternatives for making long-term decisions that protect community health and sustainability. The web-based, easy-to-use interface currently includes data from 21 seaports primarily in the Southeastern U.S., and has a map-based interface based on Google Maps. The tool was developed to visualize and assess changes in air quality due to changes in emissions and/or meteorology in order to analyze development scenarios, and is not intended to support or replace any regulatory models or programs.

4.
Atmos Environ (1994) ; 94: 518-528, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25132794

RESUMO

Vehicle emissions represent one of the most important air pollution sources in most urban areas, and elevated concentrations of pollutants found near major roads have been associated with many adverse health impacts. To understand these impacts, exposure estimates should reflect the spatial and temporal patterns observed for traffic-related air pollutants. This paper evaluates the spatial resolution and zonal systems required to estimate accurately intraurban and near-road exposures of traffic-related air pollutants. The analyses use the detailed information assembled for a large (800 km2) area centered on Detroit, Michigan, USA. Concentrations of nitrogen oxides (NOx) due to vehicle emissions were estimated using hourly traffic volumes and speeds on 9,700 links representing all but minor roads in the city, the MOVES2010 emission model, the RLINE dispersion model, local meteorological data, a temporal resolution of 1 hr, and spatial resolution as low as 10 m. Model estimates were joined with the corresponding shape files to estimate residential exposures for 700,000 individuals at property parcel, census block, census tract, and ZIP code levels. We evaluate joining methods, the spatial resolution needed to meet specific error criteria, and the extent of exposure misclassification. To portray traffic-related air pollutant exposure, raster or inverse distance-weighted interpolations are superior to nearest neighbor approaches, and interpolations between receptors and points of interest should not exceed about 40 m near major roads, and 100 m at larger distances. For census tracts and ZIP codes, average exposures are overestimated since few individuals live very near major roads, the range of concentrations is compressed, most exposures are misclassified, and high concentrations near roads are entirely omitted. While smaller zones improve performance considerably, even block-level data can misclassify many individuals. To estimate exposures and impacts of traffic-related pollutants accurately, data should be geocoded or estimated at the most-resolved spatial level; census tract and larger zones have little if any ability to represent intraurban variation in traffic-related air pollutant concentrations. These results are based on one of the most comprehensive intraurban modeling studies in the literature and results are robust. Recommendations address the value of dispersion models to portray spatial and temporal variation of air pollutants in epidemiology and other studies; techniques to improve accuracy and reduce the computational burden in urban scale modeling; the necessary spatial resolution for health surveillance, demographic, and pollution data; and the consequences of low resolution data in terms of exposure misclassification.

5.
Transp Res Rec ; 2452: 105-112, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26139957

RESUMO

Vehicular traffic is a major source of ambient air pollution in urban areas. Traffic-related air pollutants, including carbon monoxide, nitrogen oxides, particulate matter less than 2.5 µm in diameter, and diesel exhaust emissions, have been associated with adverse human health effects, especially in areas near major roads. In addition to emissions from vehicles, ambient concentrations of air pollutants include contributions from stationary sources and background (or regional) sources. Although dispersion models have been widely used to evaluate air quality strategies and policies and can represent the spatial and temporal variation in environments near roads, the use of these models in health studies to estimate air pollutant exposures has been relatively limited. This paper summarizes the modeling system used to estimate exposures in the Near-Roadway Exposure and Urban Air Pollutant Study, an epidemiological study that examined 139 children with asthma or symptoms consistent with asthma, most of whom lived near major roads in Detroit, Michigan. Air pollutant concentrations were estimated with a hybrid modeling framework that included detailed inventories of mobile and stationary sources on local and regional scales; the RLINE, AERMOD, and CMAQ dispersion models; and monitored observations of pollutant concentrations. The temporal and spatial variability in emissions and exposures over the 2.5-year study period and at more than 300 home and school locations was characterized. The paper highlights issues with the development and understanding of the significance of traffic-related exposures through the use of dispersion models in urban-scale exposure assessments and epidemiology studies.

6.
PNAS Nexus ; 3(1): pgae017, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38292536

RESUMO

On-road transportation is one of the largest contributors to air pollution in the United States. The COVID-19 pandemic provided the unintended experiment of reduced on-road emissions' impacts on air pollution due to lockdowns across the United States. Studies have quantified on-road transportation's impact on fine particulate matter (PM2.5)-attributable and ozone (O3)-attributable adverse health outcomes in the United States, and other studies have quantified air pollution-attributable health outcome reductions due to COVID-19-related lockdowns. We aim to quantify the PM2.5-attributable, O3-attributable, and nitrogen dioxide (NO2)-attributable adverse health outcomes from traffic emissions as well as the air pollution benefits due to reduced on-road activity during the pandemic in 2020. We estimate 79,400 (95% CI 46,100-121,000) premature mortalities each year due to on-road-attributable PM2.5, O3, and NO2. We further break down the impacts by pollutant and vehicle types (passenger [PAS] vs. freight [FRT] vehicles). We estimate PAS vehicles to be responsible for 63% of total impacts and FRT vehicles 37%. Nitrogen oxide (NOX) emissions from these vehicles are responsible for 78% of total impacts as it is a precursor for PM2.5 and O3. Utilizing annual vehicle miles traveled reductions in 2020, we estimate that 9,300 (5,500-14,000) deaths from air pollution were avoided in 2020 due to the state-specific reductions in on-road activity across the continental United States. By quantifying the air pollution public health benefits from lockdown-related reductions in on-road emissions, the results from this study stress the need for continued emission mitigation policies, like the U.S. Environmental Protection Agency's (EPA) recently proposed NOX standards for heavy-duty vehicles, to mitigate on-road transportation's public health impact.

7.
J Air Waste Manag Assoc ; 63(12): 1369-85, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24558701

RESUMO

Recent interest in near-road exposure to air pollutants and related health and environmental justice issues has highlighted the importance of improving the accuracy of intraurban ambient concentration estimates. Unfortunately, except in rare cases, no single source of information can accurately estimate the concentration at the desired spatial and temporal resolution over the full time period of epidemiological interest. However, it is possible to blend information from several sources so as to exploit the strengths and offset the weaknesses of each. Specifically, we are interested in combining data from ambient monitors with output from deterministic air pollution computer models. Monitor networks are sparse in both space and time, are costly to maintain, and are usually designed expressly to avoid detecting local-scale features. We use two types of computer models to compensate for these drawbacks. The first, a grid-based regional photochemical model, Community Multiscale Air Quality (CMAQ), covers large areas at high time resolution but cannot resolve features smaller than a grid cell, usually 4, 12, or 36 km across. The second, a plume dispersion model, AMS/EPA Regulatory Model (AERMOD), can resolve these features but cannot track long-distance transport or chemical reactions. We present a new Bayesian method that combines these three sources of information to resolve the intraurban pollution field. This method represents the true latent field using a two-dimensional wavelet basis, which allows direct, efficient incorporation of data at multiple levels of resolution. It furthermore allows a priori selection of the relative importance of each data source. We test its predictive accuracy and precision in a realistic urban-scale simulation. Finally, in the context of two air pollution health studies in Atlanta, Georgia, we use our model to estimate the daily mean concentrations of oxides of nitrogen (NO(x)), particulate matter with an aerodynamic diameter < or = 2.5 microm (PM2.5), and carbon monoxide (CO) at a mixture of census block group and zip code centroids for the years 2001-2002.


Assuntos
Poluição do Ar , Modelos Teóricos , Cidades , Simulação por Computador , Georgia , Análise de Ondaletas
8.
J Expo Sci Environ Epidemiol ; 33(3): 407-415, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36526873

RESUMO

BACKGROUND: A critical aspect of air pollution exposure assessments is determining the time spent in various microenvironments (ME), which can have substantially different pollutant concentrations. We previously developed and evaluated a ME classification model, called Microenvironment Tracker (MicroTrac), to estimate time of day and duration spent in eight MEs (indoors and outdoors at home, work, school; inside vehicles; other locations) based on input data from global positioning system (GPS) loggers. OBJECTIVE: In this study, we extended MicroTrac and evaluated the ability of using geolocation data from smartphones to determine the time spent in the MEs. METHOD: We performed a panel study, and the MicroTrac estimates based on data from smartphones and GPS loggers were compared to 37 days of diary data across five participants. RESULTS: The MEs were correctly classified for 98.1% and 98.3% of the time spent by the participants using smartphones and GPS loggers, respectively. SIGNIFICANCE: Our study demonstrates the extended capability of using ubiquitous smartphone data with MicroTrac to help reduce time-location uncertainty in air pollution exposure models for epidemiologic and exposure field studies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Humanos , Smartphone , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Tempo , Exposição Ambiental/análise , Monitoramento Ambiental/métodos
9.
J Air Waste Manag Assoc ; 62(5): 594-603, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22696809

RESUMO

This research characterizes associations between multiple pollutants in the near-road environment attributed to a roadway line source. It also examines the use of a tracer gas as a surrogate of mobile source pollutants. Air samples were collected in summa canisters along a 300 m transect normal to a highway in Raleigh, North Carolina for five sampling periods spanning four days. Samples were subsequently measured for volatile organic compounds (VOCs) using an electron capture gas chromatograph. Sulfur hexafluoride (SF6) was released from a finite line source adjacent to the roadway for two of the sampling periods, collected in the canisters and measured with the VOCs. Associations between each VOC, and between VOCs and the tracer, were quantified with Pearson correlation coefficients to assess the consistency of the multi-pollutant dispersion profiles, and assess the tracer as a potential surrogate for mobile source pollutants. As expected, benzene, toluene, ethylbenzene, and m,p- and o-xylenes (collectively, BTEX) show strong correlations between each other; further BTEX shows a strong correlation to SF6. Between 26 VOCs, correlation coefficients were greater than 0.8, and 14 VOCs had coefficients greater than 0.6 with the tracer gas. Even under non-downwind conditions, chemical concentrations had significant correlations with distance. Results indicate that certain VOCs are representative of a larger multi-pollutant mixture, and many VOCs are well-correlated with the tracer gas.


Assuntos
Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise , Movimentos do Ar , Cromatografia Gasosa , Ionização de Chama , North Carolina , Espectrofotometria Infravermelho , Hexafluoreto de Enxofre/química
10.
Sci Total Environ ; 793: 148378, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34171801

RESUMO

Isolating air pollution sources in a complex transportation environment to quantify their contribution is challenging, particularly with sparse stationary measurements. Mobile measurements can add finer spatial resolution to support source apportionment, but they exhibit limitations when characterizing long term concentrations. Dispersion models can help overcome these limitations. However, they are only as reliable as their input emissions inventories. Herein, we developed an innovative method to revise emissions through inverse modeling and improve dispersion modeling predictions using stationary/mobile measurements. One specific revision estimated an adjustment factor of ~306 for warehouse emissions, indicating a significant underestimation of our initial estimates. This revised emission rate scaled up nationally would correspond to ~3.5% of the total Black Carbon emissions in the U.S. Nevertheless, domain-specific revisions only contribute to a 4% increase of area source emissions while improving R2 from monthly estimates at fixed sites by 38%. After revising emissions through inverse dispersion modeling, we combine this model with stationary/mobile measurements through Bayesian Maximum Entropy (I-DISP BME) to produce temporally coarse yet spatially fine data fusion. We compare this novel data fusion approach to BME using only measurements (Flat BME). A 10-fold conventional cross-validation (representative of months with mobile measurements) shows that all BME methods have R2 values that range from 0.787 to 0.798. A 2-fold cross-validation (representative of months with no mobile measurements) shows that the R2 for I-DISP BME increases by a factor 90 when compared to Flat BME. Furthermore, not only is our novel I-DISP BME method more accurate than the classic Flat BME method, but the area it detects as highly exposed can be up to 5 times larger than that detected by the less accurate Flat BME method.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Teorema de Bayes , Carbono , Monitoramento Ambiental , Material Particulado/análise , Emissões de Veículos/análise
11.
Sci Total Environ ; 717: 137136, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32062263

RESUMO

Communities located in near-road environments face adverse health effects due to elevated exposures to traffic-related air pollution (TRAP). While the use of a combination of solid structures (i.e. sound walls) and vegetation barriers can be an effective TRAP mitigation tool, installing these barriers can also present challenges to local communities. Sound walls are costly, and building these structures often requires the involvement of federal, state, and local permitting agencies. In this paper, we proposed that the use of low-cost, impermeable, solid structures (LISS), e.g., an impermeable thin wooden, plastic or metal fence, combined with vegetation can provide an effective option for local communities to improve near-road air quality due to lower costs and easier implementation. We conducted Large Eddy Simulations (LES) for different design scenarios of LISS and vegetation barriers under various conditions. Our results indicate that (i) combining LISS and vegetation is more effective than either alone, (ii) combining a less dense vegetation and LISS can be as effective as a dense vegetation barrier, (iii) In certain scenarios, depending on wind speed and particle size, vegetation barriers alone might lead to elevated pollutant concentrations; however, combining LISS with vegetation can mitigate those negative impacts, (iv) placing LISS closer to the freeway and in front of the vegetation barrier enhances vertical dispersion of pollutants, and (v) increasing LISS height promotes pollutant concentration reduction. These design recommendations can be used by urban planners, developers, and local community leaders to evaluate and implement green infrastructure to mitigate TRAP.

12.
Sci Total Environ ; 715: 136979, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32041053

RESUMO

With increasing population, rapid urbanization, and increased migration to cities, the local impacts of increasing transportation and industrial-related air pollution are of growing concern worldwide. Elevated air pollution concentrations near these types of sources have been linked to adverse health effects including acute and chronic respiratory and cardiovascular diseases. Mobile monitoring has proven to be a useful technique to characterize spatial variability of air pollution in urban areas and pollution concentration gradients from specific sources. A study was conducted in the Kansas City, Kansas (USA) metropolitan area using mobile monitoring to characterize the spatial variability and gradients of air pollutants to identify the contribution of multiple sources on community-level air quality in a complex urban environment. Measurements focused on nitrogen dioxide (NO2), black carbon (BC), and ultrafine particulate matter (UFP). Mobile monitoring showed that median concentrations of these pollutants ranged by up to a factor of three between the communities, with individual measurements ranging over an order of magnitude within the community. Evaluating these air quality measurements with wind direction data highlighted the influence of specific and combinations of air pollution sources on these elevated concentrations, which can provide valuable information to environmental and public health officials in prioritizing and implementing cost-effect air quality management strategies to reduce exposures for urban populations.

13.
Atmosphere (Basel) ; 11(1): 1-65, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-32461808

RESUMO

Air pollution epidemiological studies often use outdoor concentrations from central-site monitors as exposure surrogates, which can induce measurement error. The goal of this study was to improve exposure assessments of ambient fine particulate matter (PM2.5), elemental carbon (EC), nitrogen oxides (NOx), and carbon monoxide (CO) for a repeated measurements study with 15 individuals with coronary artery disease in central North Carolina called the Coronary Artery Disease and Environmental Exposure (CADEE) Study. We developed a fine-scale exposure modeling approach to determine five tiers of individual-level exposure metrics for PM2.5, EC, NOx, CO using outdoor concentrations, on-road vehicle emissions, weather, home building characteristics, time-locations, and time-activities. We linked an urban-scale air quality model, residential air exchange rate model, building infiltration model, global positioning system (GPS)-based microenvironment model, and accelerometer-based inhaled ventilation model to determine residential outdoor concentrations (Cout_home, Tier 1), residential indoor concentrations (Cin_home, Tier 2), personal outdoor concentrations (Cout_personal, Tier 3), exposures (E, Tier 4), and inhaled doses (D, Tier 5). We applied the fine-scale exposure model to determine daily 24-h average PM2.5, EC, NOx, CO exposure metrics (Tiers 1-5) for 720 participant-days across the 25 months of CADEE. Daily modeled metrics showed considerable temporal and home-to-home variability of Cout_home and Cin_home (Tiers 1-2) and person-to-person variability of Cout_personal, E, and D (Tiers 3-5). Our study demonstrates the ability to apply an urban-scale air quality model with an individual-level exposure model to determine multiple tiers of exposure metrics for an epidemiological study, in support of improving health risk assessments.

14.
J Air Waste Manag Assoc ; 59(4): 461-72, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19418820

RESUMO

Population-based human exposure models predict the distribution of personal exposures to pollutants of outdoor origin using a variety of inputs, including air pollution concentrations; human activity patterns, such as the amount of time spent outdoors versus indoors, commuting, walking, and indoors at home; microenvironmental infiltration rates; and pollutant removal rates in indoor environments. Typically, exposure models rely upon ambient air concentration inputs from a sparse network of monitoring stations. Here we present a unique methodology for combining multiple types of air quality models (the Community Multi-Scale Air Quality [CMAQ] chemical transport model added to the AERMOD dispersion model) and linking the resulting hourly concentrations to population exposure models (the Hazardous Air Pollutant Exposure Model [HAPEM] or the Stochastic Human Exposure and Dose Simulation [SHEDS] model) to enhance estimates of air pollution exposures that vary temporally (annual and seasonal) and spatially (at census-block-group resolution) in an urban area. The results indicate that there is a strong spatial gradient in the predicted mean exposure concentrations near roadways and industrial facilities that can vary by almost a factor of 2 across the urban area studied. At the high end of the exposure distribution (95th percentile), exposures are higher in the central district than in the suburbs. This is mostly due to the importance of personal mobility factors whereby individuals living in the central area often move between microenvironments with high concentrations, as opposed to individuals residing at the outskirts of the city. Also, our results indicate 20-30% differences due to commuting patterns and almost a factor of 2 difference because of near-roadway effects. These differences are smaller for the median exposures, indicating the highly variable nature of the reflected ambient concentrations. In conjunction with local data on emission sources, microenvironmental factors, and behavioral and socioeconomic characteristics, the combined source-to-exposure modeling methodology presented in this paper can improve the assessment of exposures in future community air pollution health studies.


Assuntos
Poluição do Ar/análise , Exposição Ambiental , Modelos Químicos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Benzeno/análise , Benzeno/química , Sistemas de Informação Geográfica , Geografia , Tamanho da Partícula , Material Particulado/análise , Material Particulado/química
15.
Artigo em Inglês | MEDLINE | ID: mdl-31540404

RESUMO

Air pollution epidemiology studies of ambient fine particulate matter (PM2.5) and ozone (O3) often use outdoor concentrations as exposure surrogates. Failure to account for the variability of the indoor infiltration of ambient PM2.5 and O3, and time indoors, can induce exposure errors. We developed an exposure model called TracMyAir, which is an iPhone application ("app") that determines seven tiers of individual-level exposure metrics in real-time for ambient PM2.5 and O3 using outdoor concentrations, weather, home building characteristics, time-locations, and time-activities. We linked a mechanistic air exchange rate (AER) model, a mass-balance PM2.5 and O3 building infiltration model, and an inhaled ventilation model to determine outdoor concentrations (Tier 1), residential AER (Tier 2), infiltration factors (Tier 3), indoor concentrations (Tier 4), personal exposure factors (Tier 5), personal exposures (Tier 6), and inhaled doses (Tier 7). Using the application in central North Carolina, we demonstrated its ability to automatically obtain real-time input data from the nearest air monitors and weather stations, and predict the exposure metrics. A sensitivity analysis showed that the modeled exposure metrics can vary substantially with changes in seasonal indoor-outdoor temperature differences, daily home operating conditions (i.e., opening windows and operating air cleaners), and time spent outdoors. The capability of TracMyAir could help reduce uncertainty of ambient PM2.5 and O3 exposure metrics used in epidemiology studies.


Assuntos
Poluentes Atmosféricos/análise , Exposição Ambiental , Monitoramento Ambiental/métodos , Aplicativos Móveis/estatística & dados numéricos , Ozônio/análise , Material Particulado/análise , Humanos , Modelos Teóricos , North Carolina , Smartphone
16.
Int J Environ Pollut ; 65(123): 43-58, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534305

RESUMO

Transportation infrastructure (including roadway traffic, ports, and airports) is critical to the nation's economy. With a growing economy, aircraft activity is expected to grow across the world. In the US, airport-related emissions, while generally small, are not an insignificant source of air pollution and related adverse health effects. However, currently there is a lack of tools that can easily be applied to study near-source pollution and explore the benefits of improvements to air quality and exposures. Screening-level air quality modelling is a useful tool for examining urban-scale air quality impacts of airport operations. Spatially-resolved aircraft emissions are needed for the screening-level modelling. In order to create spatially-resolved aircraft emissions, we developed a bottom-up emissions estimation methodology that includes data from a global chorded inventory dataset from the aviation environmental design tool (AEDT). The initial implementation of this method was performed for Los Angeles International Airport (LAX). This paper describes a new emissions estimation methodology for aircraft emissions in support of community-scale assessments of air quality around airports and presents an illustration of its application at the Los Angeles International Airport during the LAX 2011/2012 Air Quality Source Apportionment Study.

17.
Air Qual Atmos Health ; 12: 259-270, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32636958

RESUMO

Roadside vegetation has been shown to impact downwind, near-road air quality, with some studies identifying reductions in air pollution concentrations and others indicating increases in pollutant levels when vegetation is present. These widely contradictory results have resulted in confusion regarding the capability of vegetative barriers to mitigate near-road air pollution, which numerous studies have associated with significant adverse human health effects. Roadside vegetation studies have investigated the impact of many different types and conditions of vegetation barriers and urban forests, including preserved, existing vegetation stands usually consisting of mixtures of trees and shrubs or plantings of individual trees. A study was conducted along a highway with differing vegetation characteristics to identify if and how the changing characteristics affected downwind air quality. The results indicated that roadside vegetation needed to be of sufficient height, thickness, and coverage to achieve downwind air pollutant reductions. A vegetation stand which was highly porous and contained large gaps within the stand structure had increased downwind pollutant concentrations. These field study results were consistent with other studies that the roadside vegetation could lead to reductions in average, downwind pollutant concentrations by as much as 50% when this vegetation was thick with no gaps or openings. However, the presence of highly porous vegetation with gaps resulted in similar or sometimes higher concentrations than measured in a clearing with no vegetation. The combination of air quality and meteorological measurements indicated that the vegetation affects downwind pollutant concentrations through attenuation of meteorological and vehicle-induced turbulence as air passes through the vegetation, enhanced mixing as portions of the traffic pollution plume are blocked and forced over the vegetation, and through particulate deposition onto leaf and branch surfaces. Computational fluid dynamic modeling highlighted that density of the vegetation barrier affects pollutant levels, with a leaf area density of 3.0 m2 m-3 or higher needed to ensure downwind pollutant reductions for airborne particulate matter. These results show that roadside bushes and trees can be preserved or planted along highways and other localized pollution sources to mitigate air quality and human health impacts near the source if the planting adheres to important characteristics of height, thickness, and density with full coverage from the ground to the top of the canopy. The results also highlight the importance of planting denser vegetation and maintaining the integrity and structure of these vegetation barriers to achieve pollution reductions and not contribute to unintended increases in downwind air pollutant concentrations.

18.
Atmosphere (Basel) ; 10(10): 1-610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31741750

RESUMO

Spatially and temporally resolved air quality characterization is critical for community-scale exposure studies and for developing future air quality mitigation strategies. Monitoring-based assessments can characterize local air quality when enough monitors are deployed. However, modeling plays a vital role in furthering the understanding of the relative contributions of emissions sources impacting the community. In this study, we combine dispersion modeling and measurements from the Kansas City TRansportation local-scale Air Quality Study (KC-TRAQS) and use data fusion methods to characterize air quality. The KC-TRAQS study produced a rich dataset using both traditional and emerging measurement technologies. We used dispersion modeling to support field study design and analysis. In the study design phase, the presumptive placement of fixed monitoring sites and mobile monitoring routes have been corroborated using a research screening tool C-PORT to assess the spatial and temporal coverage relative to the entire study area extent. In the analysis phase, dispersion modeling was used in combination with observations to help interpret the KC-TRAQS data. We extended this work to use data fusion methods to combine observations from stationary, mobile measurements, and dispersion model estimates.

19.
Chemosensors (Basel) ; 7(2): 26, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32704490

RESUMO

Emissions from transportation sources can impact local air quality and contribute to adverse health effects. The Kansas City Transportation and Local-Scale Air Quality Study (KC-TRAQS), conducted over a 1-year period, researched emissions source characterization in the Argentine, Turner, and Armourdale, Kansas (KS) neighborhoods and the broader southeast Kansas City, KS area. This area is characterized as a near-source environment with impacts from large railyard operations, major roadways, and commercial and industrial facilities. The spatial and meteorological effects of particulate matter less than 2.5 µm (PM2.5), and black carbon (BC) pollutants on potential population exposures were evaluated at multiple sites using a combination of regulatory grade methods and instrumentation, low-cost sensors, citizen science, and mobile monitoring. The initial analysis of a subset of these data showed that mean reference grade PM2.5 concentrations (gravimetric) across all sites ranged from 7.92 to 9.34 µg/m3. Mean PM2.5 concentrations from low-cost sensors ranged from 3.30 to 5.94 µg/m3 (raw, uncorrected data). Pollution wind rose plots suggest that the sites are impacted by higher PM2.5 and BC concentrations when the winds originate near known source locations. Initial data analysis indicated that the observed PM2.5 and BC concentrations are driven by multiple air pollutant sources and meteorological effects. The KC-TRAQS overview and preliminary data analysis presented will provide a framework for forthcoming papers that will further characterize emission source attributions and estimate near-source exposures. This information will ultimately inform and clarify the extent and impact of air pollutants in the Kansas City area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA