Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
PLoS Biol ; 17(11): e3000536, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31770370

RESUMO

What do "microbes" have to do with social equity? These microorganisms are integral to our health, that of our natural environment, and even the "health" of the environments we build. The loss, gain, and retention of microorganisms-their flow between humans and the environment-can greatly impact our health. It is well-known that inequalities in access to perinatal care, healthy foods, quality housing, and the natural environment can create and arise from social inequality. Here, we focus on the argument that access to beneficial microorganisms is a facet of public health, and health inequality may be compounded by inequitable microbial exposure.


Assuntos
Disparidades em Assistência à Saúde/tendências , Microbiota/fisiologia , Fatores Socioeconômicos , Dieta Saudável/tendências , Saúde/tendências , Disparidades nos Níveis de Saúde , Humanos , Assistência Perinatal/tendências , Saúde Pública
2.
Indoor Air ; 29(6): 880-894, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31429989

RESUMO

Since the advent of soap, personal hygiene practices have revolved around removal, sterilization, and disinfection-both of visible soil and microscopic organisms-for a myriad of cultural, aesthetic, or health-related reasons. Cleaning methods and products vary widely in their recommended use, effectiveness, risk to users or building occupants, environmental sustainability, and ecological impact. Advancements in science and technology have facilitated in-depth analyses of the indoor microbiome, and studies in this field suggest that the traditional "scorched-earth cleaning" mentality-that surfaces must be completely sterilized and prevent microbial establishment-may contribute to long-term human health consequences. Moreover, the materials, products, activities, and microbial communities indoors all contribute to, or remove, chemical species to the indoor environment. This review examines the effects of cleaning with respect to the interaction of chemistry, indoor microbiology, and human health.


Assuntos
Poluição do Ar em Ambientes Fechados , Ambiente Construído , Desinfecção , Humanos , Microbiota
3.
Infect Immun ; 85(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27795364

RESUMO

Group A Streptococcus (GAS) acquires mutations of the virulence regulator CovRS in human and mouse infections, and these mutations result in the upregulation of virulence genes and the downregulation of the protease SpeB. To identify in vivo mutants with novel phenotypes, GAS isolates from infected mice were screened by enzymatic assays for SpeB and the platelet-activating factor acetylhydrolase Sse, and a new type of variant that had enhanced Sse expression and normal levels of SpeB production was identified (the variants had a phenotype referred to as enhanced Sse activity [SseA+] and normal SpeB activity [SpeBA+]). SseA+ SpeBA+ variants had transcript levels of CovRS-controlled virulence genes comparable to those of a covS mutant but had no covRS mutations. Genome resequencing of an SseA+ SpeBA+ isolate identified a C605A nonsense mutation in orphan kinase gene rocA, and 6 other SseA+ SpeBA+ isolates also had nonsense mutations or small indels in rocA RocA and CovS mutants had similar levels of enhancement of the expression of CovRS-controlled virulence genes at the exponential growth phase; however, mutations of RocA but not mutations of CovS did not result in the downregulation of speB transcription at stationary growth phase or in subcutaneous infection of mice. GAS with RocA and CovS mutations caused greater enhancement of the expression of hasA than spyCEP in mouse skin infection than wild-type GAS did. RocA mutants ranked between wild-type GAS and CovS mutants in skin invasion, inhibition of neutrophil recruitment, and virulence in subcutaneous infection of mice. Thus, GAS RocA mutants can be selected in subcutaneous infections in mice and exhibit gene expression patterns and virulences distinct from those of CovS mutants. The findings provide novel information for understanding GAS fitness mutations in vivo, virulence gene regulation, in vivo gene expression, and virulence.


Assuntos
Proteínas de Bactérias/genética , Códon sem Sentido/genética , Exotoxinas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Transativadores/genética , Virulência/genética , Animais , Regulação para Baixo/genética , Feminino , Regulação Bacteriana da Expressão Gênica/genética , Histidina Quinase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/genética , Pele/microbiologia , Transcrição Gênica/genética
4.
Microb Ecol ; 73(2): 417-434, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27677892

RESUMO

Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P < 0.001) and had more discriminant taxa delineating groups (linear discriminant analysis). Living inoculum soil contained more Chloroflexi and Acidobacteria, while the sterile inoculum soil had more Bacteroidetes, Firmicutes, Gemmatimonadetes, and Verrucomicrobia. Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P < 0.05), and more discriminant taxa than conventionally farmed inoculum-treated soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.


Assuntos
Bactérias/classificação , Produtos Agrícolas/microbiologia , Consórcios Microbianos , Filogenia , Plantas/microbiologia , Microbiologia do Solo , Solo/química , Agricultura , Avena , Bactérias/genética , Sequência de Bases , Biodiversidade , Biota , Classificação , DNA Bacteriano/análise , DNA Bacteriano/genética , Genes Bacterianos , Metagenômica , Montana , Fixação de Nitrogênio , Desenvolvimento Vegetal , Plantas Daninhas , Plantas/classificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Appl Environ Microbiol ; 80(17): 5515-21, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24973070

RESUMO

Four new primers and one published primer were used to PCR amplify hypervariable regions within the protozoal 18S rRNA gene to determine which primer pair provided the best identification and statistical analysis. PCR amplicons of 394 to 498 bases were generated from three primer sets, sequenced using Roche 454 pyrosequencing with Titanium, and analyzed using the BLAST database (NCBI) and MOTHUR version 1.29. The protozoal diversity of rumen contents from moose in Alaska was assessed. In the present study, primer set 1, P-SSU-316F and GIC758R (amplicon of 482 bases), gave the best representation of diversity using BLAST classification, and the set amplified Entodinium simplex and Ostracodinium spp., which were not amplified by the other two primer sets. Primer set 2, GIC1080F and GIC1578R (amplicon of 498 bases), had similar BLAST results and a slightly higher percentage of sequences that were identified with a higher sequence identity. Primer sets 1 and 2 are recommended for use in ruminants. However, primer set 1 may be inadequate to determine protozoal diversity in nonruminants. The amplicons created by primer set 1 were indistinguishable for certain species within the genera Bandia, Blepharocorys, Polycosta, and Tetratoxum and between Hemiprorodon gymnoprosthium and Prorodonopsis coli, none of which are normally found in the rumen.


Assuntos
Cilióforos/genética , Primers do DNA/genética , DNA de Protozoário/genética , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 18S/genética , Análise de Sequência de DNA/métodos , Alaska , Animais , Biodiversidade , Cilióforos/isolamento & purificação , DNA de Protozoário/química , DNA Ribossômico/química , DNA Ribossômico/genética , Rúmen/parasitologia , Ruminantes/parasitologia
6.
Microb Ecol ; 68(2): 185-95, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24595908

RESUMO

In the present study, the rumen bacteria of moose (Alces alces) from three distinct geographic locations were investigated. Moose are large, browsing ruminants in the deer family, which subsist on fibrous, woody browse, and aquatic plants. Subspecies exist which are distinguished by differing body and antler size, and these are somewhat geographically isolated. Seventeen rumen samples were collected from moose in Vermont, Alaska, and Norway, and bacterial 16S ribosomal RNA genes were sequenced using Roche 454 pyrosequencing with titanium chemistry. Overall, 109,643 sequences were generated from the 17 individual samples, revealing 33,622 unique sequences. Members of the phylum Bacteroidetes were dominant in samples from Alaska and Norway, but representatives of the phylum Firmicutes were dominant in samples from Vermont. Within the phylum Bacteroidetes, Prevotellaceae was the dominant family in all three sample locations, most of which belonged to the genus Prevotella. Within the phylum Firmicutes, the family Lachnospiraceae was the most prevalent in all three sample locations. The data set supporting the results of this article is available in the Sequence Read Archive (SRA), available through NCBI [study accession number SRP022590]. Samples clustered by geographic location and by weight and were heterogenous based on gender, location, and weight class (p < 0.05). Location was a stronger factor in determining the core microbiome than either age or weight, but gender did not appear to be a strong factor. There were no shared operational taxonomic units across all 17 samples, which indicates that these moose may have been isolated long enough to preclude a core microbiome among moose. Other potential factors discussed include differences in climate, food quality and availability, gender, and life cycle.


Assuntos
Bactérias/classificação , Cervos/microbiologia , Rúmen/microbiologia , Alaska , Animais , DNA Bacteriano/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Noruega , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vermont
7.
Curr Dev Nutr ; 8(5): 102160, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38779039

RESUMO

Inflammatory bowel disease is a chronic condition with a significant economic and social burden. The disease is complex and challenging to treat because it involves several pathologies, such as inflammation, oxidative stress, dysbiosis, and intestinal damage. The search for an effective treatment has identified cruciferous vegetables and their phytochemicals as potential management options for inflammatory bowel disease because they contain prebiotics, probiotics, and anti-inflammatory and antioxidant metabolites essential for a healthy gut. This critical narrative style review provides a robust insight into the pharmacological effects and benefits of crucifers and their documented bioactive compounds in in vitro and in vivo models, as well as clinical inflammatory bowel disease. The review highlights the significant impact of crucifer preparation and the presence of glucosinolates, isothiocyanates, flavonoids, and polyphenolic compounds, which are essential for the anti-inflammatory and antioxidative benefits of cruciferous vegetables, as well as their ability to promote the healthy microbial community and maintain the intestinal barrier. This review may serve as a viable nutritional guide for future research on methods and features essential to developing experiments, preventions, and treatments for inflammatory bowel disease. There is limited clinical information and future research may utilize current innovative tools, such as metabolomics, for adequate knowledge and effective translation into clinical therapy.

8.
iScience ; 27(1): 108668, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38230264

RESUMO

Microorganism communities can shape host phenotype evolution but are often comprised of thousands of taxa with varied impact on hosts. Identification of taxa influencing host evolution relies on first describing microorganism communities and acquisition routes. Keratinolytic (keratin-degrading) microorganisms are hypothesized to be abundant in saltmarsh sediments and to contribute to plumage evolution in saltmarsh-adapted sparrows. Metabarcoding was used to describe plumage bacterial (16S rRNA) and fungal (ITS) communities in three sparrow species endemic to North America's Atlantic coast saltmarshes. Results describe limited within-species variability and moderate host species-level patterns in microorganism diversity and community composition. A small percentage of overall microorganism diversity was comprised of potentially keratinolytic microorganisms, warranting further functional studies. Distinctions between plumage and saltmarsh sediment bacteria, but not fungal, communities were detected, suggesting multiple bacterial acquisition routes and/or vertebrate host specialization. This research lays groundwork for future testing of causal links between microorganisms and avian host evolution.

9.
J Nutr Biochem ; 113: 109238, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36442719

RESUMO

Inflammatory Bowel Diseases (IBD) are chronic, reoccurring, and debilitating conditions characterized by inflammation in the gastrointestinal tract, some of which can lead to more systemic complications and can include autoimmune dysfunction, a change in the taxonomic and functional structure of microbial communities in the gut, and complicated burdens in a person's daily life. Like many diseases based in chronic inflammation, research on IBD has pointed towards a multifactorial origin involving factors of the person's lifestyle, immune system, associated microbial communities, and environmental conditions. Treatment currently exists only as palliative care, and seeks to disrupt the feedback loop of symptoms by reducing inflammation and allowing as much of a return to homeostasis as possible. Various anti-inflammatory options have been explored, and this review focuses on the use of diet as an alternative means of improving gut health. Specifically, we highlight the connection between the role of sulforaphane from cruciferous vegetables in regulating inflammation and in modifying microbial communities, and to break down the role they play in IBD.


Assuntos
Brassica , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Microbioma Gastrointestinal/fisiologia , Inflamação , Dieta , Brassica/química
10.
iScience ; 26(5): 106606, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37128602

RESUMO

The American lobster, Homarus americanus, is an economically valuable and ecologically important crustacean along the North Atlantic coast of North America. Populations in southern locations have declined in recent decades due to increasing ocean temperatures and disease, and these circumstances are progressing northward. We monitored 57 adult female lobsters, healthy and shell diseased, under three seasonal temperature cycles for a year, to track shell bacterial communities using culturing and 16S rRNA gene sequencing, progression of epizootic shell disease using visual assessment, and antimicrobial activity of hemolymph. The richness of bacterial taxa present, evenness of abundance, and community similarity between lobsters was affected by water temperature at the time of sampling, water temperature over time based on seasonal temperature regimes, shell disease severity, and molt stage. Several bacteria were prevalent on healthy lobster shells but missing or less abundant on diseased shells, although some bacteria were found on all shells regardless of health status.

11.
mSystems ; 8(6): e0071723, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37874170

RESUMO

IMPORTANCE: Social and economic inequities can have a profound impact on human health. The inequities could result in alterations to the gut microbiome, an important factor that may have profound abilities to alter health outcomes. Moreover, the strong correlations between social and economic inequities have been long understood. However, to date, limited research regarding the microbiome and mental health within the context of socioeconomic inequities exists. One particular inequity that may influence both mental health and the gut microbiome is living in a food desert. Persons living in food deserts may lack access to sufficient and/or nutritious food and often experience other inequities, such as increased exposure to air pollution and poor access to healthcare. Together, these factors may confer a unique risk for microbial perturbation. Indeed, external factors beyond a food desert might compound over time to have a lasting effect on an individual's gut microbiome. Therefore, adoption of a life-course approach is expected to increase the ecological validity of research related to social inequities, the gut microbiome, and physical and mental health.


Assuntos
Microbioma Gastrointestinal , Microbiota , Veteranos , Humanos , Desertos Alimentares , Veteranos/psicologia , Fezes
12.
mSystems ; 8(5): e0053223, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37702510

RESUMO

IMPORTANCE: Evaluating bacterial communities across different locations in the gut provides a greater insight than fecal samples alone and provides an additional metric by which to evaluate beneficial host-microbe interactions. Here, we show that 10% steamed broccoli sprouts in the diet protects mice from the negative effects of dextran sodium sulfate-induced colitis, that colitis erases biogeographic patterns of bacterial communities in the gut, and that the cecum is not likely to be a significant contributor to colonic bacteria of interest in the DSS mouse model of ulcerative colitis. Mice fed the broccoli sprout diet during colitis performed better than mice fed the control diet while receiving DSS. The identification of accessible dietary components and concentrations that help maintain and correct the gut microbiome may provide universal and equitable approaches to IBD prevention and recovery, and broccoli sprouts represent a promising strategy.


Assuntos
Brassica , Colite , Microbioma Gastrointestinal , Camundongos , Animais , Colite/induzido quimicamente , Inflamação
13.
bioRxiv ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37292900

RESUMO

Inflammatory Bowel Diseases (IBD) are devastating conditions of the gastrointestinal tract with limited treatments, and dietary intervention may be effective, and affordable, for managing symptoms. Glucosinolate compounds are highly concentrated in broccoli sprouts, especially glucoraphanin, and can be metabolized by certain mammalian gut bacteria into anti inflammatory isothiocyanates, such as sulforaphane. Gut microbiota exhibit biogeographic patterns, but it is unknown if colitis alters these or whether the location of glucoraphanin metabolizing bacteria affects anti-inflammatory benefits. We fed specific pathogen free C57BL/6 mice either a control diet or a 10% steamed broccoli sprout diet, and gave a three-cycle regimen of 2.5% dextran sodium sulfate (DSS) in drinking water over a 34-day experiment to simulate chronic, relapsing ulcerative colitis. We monitored body weight, fecal characteristics, lipocalin, serum cytokines, and bacterial communities from the luminal and mucosa-associated populations in the jejunum, cecum, and colon. Mice fed the broccoli sprout diet with DSS treatment performed better than mice fed the control diet with DSS, including significantly more weight gain, lower Disease Activity Indexes, lower plasma lipocalin and proinflammatory cytokines, and higher bacterial richness in all gut locations. Bacterial communities were assorted by gut location, but were more homogenous across locations in the control diet + DSS mice. Importantly, our results showed that broccoli sprout feeding abrogated the effects of DSS on gut microbiota, as bacterial richness and biogeography were similar between mice receiving broccoli sprouts with and without DSS. Collectively, these results support the protective effect of steamed broccoli sprouts against dysbiosis and colitis induced by DSS. Importance: Evaluating bacterial communities across different locations in the gut provides a greater insight than fecal samples alone, and provides an additional metric by which to evaluate beneficial host-microbe interactions. Here, we show that 10% steamed broccoli sprouts in the diet protects mice from the negative effects of dextran sodium sulfate induced colitis, that colitis erases biogeographical patterns of bacterial communities in the gut, and that the cecum is not likely to be a significant contributor to colonic bacteria of interest in the DSS mouse model of ulcerative colitis. Mice fed the broccoli sprout diet during colitis performed better than mice fed the control diet while receiving DSS. The identification of accessible dietary components and concentrations that help maintain and correct the gut microbiome may provide universal and equitable approaches to IBD prevention and recovery, and broccoli sprouts represent a promising strategy.

14.
bioRxiv ; 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36747766

RESUMO

Crohn's Disease (CD) is a presentation of Inflammatory Bowel Disease (IBD) that manifests in childhood and adolescence, and involves chronic and severe enterocolitis, immune and gut microbiome dysregulation, and other complications. Diet and gut-microbiota-produced metabolites are sources of anti-inflammatories which could ameliorate symptoms. However, questions remain on how IBD influences biogeographic patterns of microbial location and function in the gut, how early life transitional gut communities are affected by IBD and diet interventions, and how disruption to biogeography alters disease mediation by diet components or microbial metabolites. Many studies on diet and IBD use a chemically induced ulcerative colitis model, despite the availability of an immune-modulated CD model. Interleukin-10-knockout (IL-10-KO) mice on a C57BL/6 background, beginning at age 4 or 7 weeks, were fed a control diet or one containing 10% (w/w) raw broccoli sprouts, which was high in the sprout-sourced anti-inflammatory sulforaphane. Diets began 7 days prior to, and for 2 weeks after inoculation with Helicobacter hepaticus, which triggers Crohn's-like symptoms in these immune-impaired mice. The broccoli sprout diet increased sulforaphane in plasma; decreased weight stagnation, fecal blood, and diarrhea associated; and increased microbiota richness in the gut, especially in younger mice. Sprout diets resulted in some anatomically specific bacteria in younger mice, and reduced the prevalence and abundance of pathobiont bacteria which trigger inflammation in the IL-10-KO mouse, for example; Escherichia coli and Helicobacter. Overall, the IL-10-KO mouse model is responsive to a raw broccoli sprout diet and represents an opportunity for more diet-host-microbiome research.

15.
mSystems ; 8(6): e0068823, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37942948

RESUMO

IMPORTANCE: To our knowledge, IL-10-KO mice have not previously been used to investigate the interactions of host, microbiota, and broccoli, broccoli sprouts, or broccoli bioactives in resolving symptoms of CD. We showed that a diet containing 10% raw broccoli sprouts increased the plasma concentration of the anti-inflammatory compound sulforaphane and protected mice to varying degrees against disease symptoms, including weight loss or stagnation, fecal blood, and diarrhea. Younger mice responded more strongly to the diet, further reducing symptoms, as well as increased gut bacterial richness, increased bacterial community similarity to each other, and more location-specific communities than older mice on the diet intervention. Crohn's disease disrupts the lives of patients and requires people to alter dietary and lifestyle habits to manage symptoms. The current medical treatment is expensive with significant side effects, and a dietary intervention represents an affordable, accessible, and simple strategy to reduce the burden of symptoms.


Assuntos
Brassica , Doença de Crohn , Enterocolite , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Doenças Inflamatórias Intestinais/microbiologia , Doença de Crohn/prevenção & controle , Dieta
16.
BMC Microbiol ; 12: 212, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22992344

RESUMO

BACKGROUND: The work presented here provides the first intensive insight into the bacterial populations in the digestive tract of the North American moose (Alces alces). Eight free-range moose on natural pasture were sampled, producing eight rumen samples and six colon samples. Second generation (G2) PhyloChips were used to determine the presence of hundreds of operational taxonomic units (OTUs), representing multiple closely related species/strains (>97% identity), found in the rumen and colon of the moose. RESULTS: A total of 789 unique OTUs were used for analysis, which passed the fluorescence and the positive fraction thresholds. There were 73 OTUs, representing 21 bacterial families, which were found exclusively in the rumen samples: Lachnospiraceae, Prevotellaceae and several unclassified families, whereas there were 71 OTUs, representing 22 bacterial families, which were found exclusively in the colon samples: Clostridiaceae, Enterobacteriaceae and several unclassified families. Overall, there were 164 OTUs that were found in 100% of the samples. The Firmicutes were the most dominant bacteria phylum in both the rumen and the colon. Microarray data available at ArrayExpress, accession number E-MEXP-3721. CONCLUSIONS: Using PhyloTrac and UniFrac computer software, samples clustered into two distinct groups: rumen and colon, confirming that the rumen and colon are distinct environments. There was an apparent correlation of age to cluster, which will be validated by a larger sample size in future studies, but there were no detectable trends based upon gender.


Assuntos
Bactérias/classificação , Biodiversidade , Colo/microbiologia , Rúmen/microbiologia , Ruminantes/microbiologia , Animais , Bactérias/genética , Análise por Conglomerados , Feminino , Masculino , Metagenoma , Análise em Microsséries , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
17.
PLoS One ; 17(1): e0262304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34995335

RESUMO

Lignocellulosic biomass such as barley straw is a renewable and sustainable alternative to traditional feeds and could be used as bioenergy sources; however, low hydrolysis rate reduces the fermentation efficiency. Understanding the degradation and colonization of barley straw by rumen bacteria is the key step to improve the utilization of barley straw in animal feeding or biofuel production. This study evaluated the hydrolysis of barley straw as a result of the inoculation by rumen fluid of camel and sheep. Ground barley straw was incubated anaerobically with rumen inocula from three fistulated camels (FC) and three fistulated sheep (FR) for a period of 72 h. The source of rumen inoculum did not affect the disappearance of dry matter (DMD), neutral detergent fiber (NDFD). Group FR showed higher production of glucose, xylose, and gas; while higher ethanol production was associated with cellulosic hydrolysates obtained from FC group. The diversity and structure of bacterial communities attached to barley straw was investigated by Illumina Mi-Seq sequencing of V4-V5 region of 16S rRNA genes. The bacterial community was dominated by phylum Firmicutes and Bacteroidetes. The dominant genera were RC9_gut_group, Ruminococcus, Saccharofermentans, Butyrivibrio, Succiniclasticum, Selenomonas, and Streptococcus, indicating the important role of these genera in lignocellulose fermentation in the rumen. Group FR showed higher RC9_gut_group and group FC revealed higher Ruminococcus, Saccharofermentans, and Butyrivibrio. Higher enzymes activities (cellulase and xylanase) were associated with group FC. Thus, bacterial communities in camel and sheep have a great potential to improve the utilization lignocellulosic material in animal feeding and the production of biofuel and enzymes.


Assuntos
Bactérias/metabolismo , Biocombustíveis , Camelus/microbiologia , Hordeum/metabolismo , Rúmen/microbiologia , Ovinos/microbiologia , Animais , Biocombustíveis/análise , Biocombustíveis/microbiologia , Etanol/análise , Etanol/metabolismo , Fermentação , Hidrólise , Lignina/metabolismo , Açúcares/análise , Açúcares/metabolismo
18.
Front Microbiol ; 13: 824950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602067

RESUMO

Despite decades of research on lobster species' biology, ecology, and microbiology, there are still unresolved questions about the microbial communities which associate in or on lobsters under healthy or diseased states, microbial acquisition, as well as microbial transmission between lobsters and between lobsters and their environment. There is an untapped opportunity for metagenomics, metatranscriptomics, and metabolomics to be added to the existing wealth of knowledge to more precisely track disease transmission, etiology, and host-microbe dynamics. Moreover, we need to gain this knowledge of wild lobster microbiomes before climate change alters environmental and host-microbial communities more than it likely already has, throwing a socioeconomically critical industry into disarray. As with so many animal species, the effects of climate change often manifest as changes in movement, and in this perspective piece, we consider the movement of the American lobster (Homarus americanus), Atlantic Ocean currents, and the microorganisms associated with either.

19.
mSystems ; 7(1): e0124021, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089060

RESUMO

Social and political policy, human activities, and environmental change affect the ways in which microbial communities assemble and interact with people. These factors determine how different social groups are exposed to beneficial and/or harmful microorganisms, meaning microbial exposure has an important socioecological justice context. Therefore, greater consideration of microbial exposure and social equity in research, planning, and policy is imperative. Here, we identify 20 research questions considered fundamentally important to promoting equitable exposure to beneficial microorganisms, along with safeguarding resilient societies and ecosystems. The 20 research questions we identified span seven broad themes, including the following: (i) sociocultural interactions; (ii) Indigenous community health and well-being; (iii) humans, urban ecosystems, and environmental processes; (iv) human psychology and mental health; (v) microbiomes and infectious diseases; (vi) human health and food security; and (vii) microbiome-related planning, policy, and outreach. Our goal was to summarize this growing field and to stimulate impactful research avenues while providing focus for funders and policymakers.


Assuntos
Doenças Transmissíveis , Microbiota , Humanos , Políticas , Justiça Social , Saúde Pública
20.
J Nutr Biochem ; 92: 108613, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33705950

RESUMO

Adoption of an obesogenic diet low in calcium and vitamin D (CaD) leads to increased obesity, colonic inflammation, and cancer. However, the underlying mechanisms remain to be elucidated. We tested the hypothesis that CaD supplementation (from inadequacy to adequacy) may reduce colonic inflammation, oncogenic signaling, and dysbiosis in the colon of C57BL/6 mice fed a Western diet. Male C57/BL6 mice (4-weeks old) were assigned to 3 dietary groups for 36 weeks: (1) AIN76A as a control diet (AIN); (2) a defined rodent "new Western diet" (NWD); or (3) NWD with CaD supplementation (NWD/CaD). Compared to the AIN, mice receiving the NWD or NWD/CaD exhibited more than 0.2-fold increase in the levels of plasma leptin, tumor necrosis factor α (TNF-α) and body weight. The levels of plasma interleukin 6 (IL-6), inflammatory cell infiltration, and ß-catenin/Ki67 protein (oncogenic signaling) were increased more than 0.8-fold in the NWD (but not NWD/CaD) group compared to the AIN group. Consistent with the inflammatory phenotype, colonic secondary bile acid (inflammatory bacterial metabolite) levels increased more than 0.4-fold in the NWD group compared to the NWD/CaD and AIN groups. Furthermore, the abundance of colonic Proteobacteria (e.g., Parasutterela), considered signatures of dysbiosis, was increased more than four-fold; and the α diversity of colonic bacterial species, indicative of health, was decreased by 30% in the NWD group compared to the AIN and NWD/CaD groups. Collectively, CaD adequacy reduces colonic inflammation, ß-catenin oncogenic signaling, secondary bile acids, and bacterial dysbiosis in mice fed with a Western diet.


Assuntos
Cálcio/uso terapêutico , Disbiose/tratamento farmacológico , Inflamação/tratamento farmacológico , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico , beta Catenina/metabolismo , Animais , Colo/microbiologia , Dieta Ocidental/efeitos adversos , Suplementos Nutricionais , Disbiose/etiologia , Inflamação/etiologia , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA