Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Macromol Biosci ; 24(6): e2300450, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403872

RESUMO

Gelatin-based injectable hydrogels capable of encapsulating cells are pivotal in tissue engineering because they can conform to any geometry and exhibit physical properties similar to those of living tissues. However, the slow gelation process observed in these cell-encapsulating hydrogels often causes an uneven dispersion of cells. This study proposes an approach for achieving fast gelation of unmodified gelatin under physiological conditions through gelatin preclustering. By using tetrafunctional succinimidyl-terminated poly(ethylene glycol) as a clustering agent, the gelation process is successfully expedited fivefold without requiring chemical modifications, effectively addressing the associated challenges of uneven cell distribution.


Assuntos
Gelatina , Hidrogéis , Polietilenoglicóis , Engenharia Tecidual , Alicerces Teciduais , Gelatina/química , Hidrogéis/química , Hidrogéis/farmacologia , Alicerces Teciduais/química , Polietilenoglicóis/química , Engenharia Tecidual/métodos , Humanos , Animais , Injeções , Camundongos
2.
J Mater Chem B ; 12(29): 7103-7112, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38919129

RESUMO

Artificially synthesized poly(ethylene glycol) (PEG)-based hydrogels are extensively utilized as biomaterials for tissue scaffolds and cell culture matrices due to their non-protein adsorbing properties. Although these hydrogels are inherently non-cell-adhesive, advancements in modifying polymer networks with functional peptides have led to PEG hydrogels with diverse functionalities, such as cell adhesion and angiogenesis. However, traditional methods of incorporating additives into hydrogel networks often result in the capping of crosslinking points with heterogeneous substances, potentially impairing mechanical properties and obscuring the causal relationships of biological functions. This study introduces polymer additives designed to resist prolonged elution from hydrogels, providing a novel approach to facilitate cell culture on non-adhesive surfaces. By clustering tetra-branched PEG to form ultra-high molecular weight hyper-branched structures and functionalizing their termini with cell-adhesive peptides, we successfully entrapped these clusters within the hydrogel matrix without compromising mechanical strength. This method has enabled successful cell culture on inherently non-adhesive PEG hydrogel surfaces at high peptide densities, a feat challenging to achieve with conventional means. The approach proposed in this study not only paves the way for new possibilities with polymer additives but also serves as a new design paradigm for cell culturing on non-cell-adhesive hydrogels.


Assuntos
Adesão Celular , Hidrogéis , Peptídeos , Polietilenoglicóis , Hidrogéis/química , Hidrogéis/síntese química , Hidrogéis/farmacologia , Adesão Celular/efeitos dos fármacos , Polietilenoglicóis/química , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Humanos , Propriedades de Superfície , Animais , Polímeros/química
3.
Regen Ther ; 25: 24-34, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38108043

RESUMO

With the rising prevalence of bone-related injuries, it is crucial to improve treatments for fractures and defects. Tissue engineering offers a promising solution in the form of injectable hydrogel scaffolds that can sustain the release of growth factors like bone morphogenetic protein-2 (BMP-2) for bone repair. Recently, we discovered that tetra-PEG hydrogels (Tetra gels) undergo gel-gel phase separation (GGPS) at low polymer content, resulting in hydrophobicity and tissue affinity. In this work, we examined the potential of a newer class of gel, the oligo-tetra-PEG gel (Oligo gel), as a growth factor-releasing scaffold. We investigated the extent of GGPS occurring in the two gels and assessed their ability to sustain BMP-2 release and osteogenic potential in a mouse calvarial defect model. The Oligo gel underwent a greater degree of GGPS than the Tetra gel, exhibiting higher turbidity, hydrophobicity, and pore formation. The Oligo gel demonstrated sustained protein or growth factor release over a 21-day period from protein release kinetics and osteogenic cell differentiation studies. Finally, BMP-2-loaded Oligo gels achieved complete regeneration of critical-sized calvarial defects within 28 days, significantly outperforming Tetra gels. The easy formulation, injectability, and capacity for sustained release makes the Oligo gel a promising candidate therapeutic biomaterial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA