Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0294033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37939150

RESUMO

Iron (Fe) is one of the limiting micronutrients essential for crop productivity. The goal of our study was to evaluate the effects of different sources and rates of Fe fertilization on the marketable yield, physical and chemical properties, and phytochemical quality of fresh market tomatoes (Solanum Lycopersicum L., cv. Sunbrite). A factorial experiment under a drip-irrigated plasticulture system was conducted in a completely randomized design with two sources of Fe (nano vs. chelated) and four rates of application (0, 10, 20, and 40 mg/L) with four replications. Results indicated that relative chlorophyll concentration in the leaf (SPAD index) increased significantly (by 24 to 27%) with 10 and 20 mg/L of both nano- and chelated Fe fertilization compared to the control. Increasing Fe fertilization decreased the leaf SPAD readings. The total fruit yield of tomato was 1.6 to 1.8 times higher under the chelated- and nano Fe fertilization and the increase in yield was significantly higher under the chelated Fe fertilization, when compared to the control. In contrast, the tomato harvest index was highest under 10 and 20 mg/L of nano Fe than under other Fe treatments. While the chelated Fe fertilized tomatoes had significantly higher concentrations of vitamin C (34%), ß-carotene (6%), total carotene (25%), flavonoid (17%), and polyphenol (66%), the nano Fe, in contrast, increased ß-carotene, total carotene, and polyphenol concentrations by 25, 33, 51, and 7%, respectively, compared to the control. The 20 mg/L chelated Fe significantly increased the vitamin C, total carotene, flavonoid, polyphenol concentration, and antioxidant capacity more than any other Fe treatments. Based on the principal components analyses, vitamin C, lycopene, and anthocyanin were identified as the core indicators of the tomato nutrition quality index (NQIndex). The NQIndex ranged from 47 to 54, falling within the medium level of nutritional quality (40 to <70). In conclusion, the chelated Fe, when applied at 20 mg/L, was the most appropriate rate based on highly correlated connectivity for the phytochemicals syntheses associated with the improved tomato antioxidant capacity.


Assuntos
Antioxidantes , Solanum lycopersicum , Antioxidantes/química , Carotenoides/análise , Ácido Ascórbico/análise , Frutas/química , Quelantes de Ferro , Ferro/análise , Flavonoides/análise , Polifenóis/análise
2.
PLoS One ; 18(11): e0293257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37939097

RESUMO

To evaluate the effects of conservation agriculture (CA) on SOC pools and their lability, field experiments (2015-2020) were conducted on contrasting soils under subtropical climates. The experiment on non-calcareous soils, was comprised of tillage (minimum [MT] vs. conventional [CT]) in main plots, cropping systems (Wheat [Triticum aestivum]-Aus and Aman rice [Oryza sativa L.], WRR; Lentil [Lens culinaris]-Aus and Aman rice, LRR; and Mustard [Brassica nigra]- Boro and Aman rice, MRR) in the sub-plots, and crop residue (with or without 20% residue) in the sub-sub plots. The experiment on calcareous soils, was comprised of tillage (strip-till, ST; no-till, NT; and CT) and crop residue (high residue, HR at 50% by height vs. low residue, LR at 15%). Results showed that the MT had higher SOC contents by 18.8% than the CT in non-calcareous soils. Likewise, SOC was 12.5% and 6.7% higher in the NT and ST, respectively, than in the CT in calcareous soils. Significantly higher particulate organic (POC), permanganate oxidizable (POXC), and microbial biomass carbon (MBC) were observed in the MT, NT, and ST than in the CT at both locations. Reduced tillage with residue retention under LRR had a higher SOC, including labile C pools compared to WRR and MRR systems. Similarly, carbon management index (1.2-1.5 and 1.0-1.2) in both soils had significant positive correlations with SOC lability via POXC, POC, and MBC pools, indicating a SOC sequestration potential. In conclusion, our results showed positive effects of CA on SOC and its lability across soils.


Assuntos
Lens (Planta) , Oryza , Solo/química , Carbono , Produtos Agrícolas , Agricultura/métodos , Triticum , Amantadina
3.
PLoS One ; 17(8): e0263205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35947542

RESUMO

Soil organic carbon (SOC) plays a key role in regulating soil quality functions and ecosystem services. The objective of our study was to evaluate the impact of deforestation and subsequent land-use change on the SOC and total nitrogen (TN) concentration, quality, and lability under otherwise similar soil and environmental conditions. Geo-referenced composite soils (0 to 30 cm depth at 7.5 cm interval) sampled from agriculture, bioenergy plantations (Miscanthus x giganteus), Conservation Reserve Program (CRP), and wetland were analyzed for SOC, TN, active C (AC), humic- and fulvic acid (HA and FA), non-humic C (NH), E4: E6 ratio, humification indices (HI, HR, and DH), and carbon and nitrogen management indices (CPI, NPI, and CMI), compared to soils under protected forest as a control. Results showed that the CRP had the highest depth distribution and profile-wise stocks of SOC, TN, AC, and FA with respect to the lowest in agriculture upon conversion of forest. Moreover, the SOC and TN contents were significantly stratified in the CRP when compared to agriculture. While agriculture had the wider HA: FA ratios with highest HI and HR but lowest DH values, the CRP, in contrast, had the narrow HA: FA ratios with lowest HI but highest DH values, when compared to the forest. Spectral analyses have shown lower E4: E6 ratios under the forest when compared to both agriculture and the CRP; however, the later had significantly higher E4: E6 ratios than that of agriculture. The CPI, as measures of SOC accumulation or depletion, significantly decreased by 16% under agriculture but increased by 12% under the CRP. While the CMI, as measures of SOC accumulation or depletion and lability, with higher values under the CRP suggested a proportionally more labile SOC accumulation, in contrast, the smaller values under agriculture indicated a greater depletion of labile SOC over time. Moreover, the CRP may have favored a more labile SOC accumulation with higher proportions of aliphatic C compounds, whereas agriculture may have a SOC with high proportions of non-labile aromatic C compounds. Principal components analysis clearly separated and/or discriminated the land-use impacts on soil carbon pools and TN. Likewise, redundancy analysis of the relationship between measured soil parameters and land-use validated that the TOC, TN, FA, humin, and CPI were significantly impacted due to synergism among soil properties as positively influenced by the CRP upon conversion of agriculture.


Assuntos
Carbono , Solo , Agricultura/métodos , Carbono/análise , China , Conservação dos Recursos Naturais , Ecossistema , Nitrogênio/análise
4.
PLoS One ; 16(10): e0256397, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34597320

RESUMO

Nitrogen (N) is the prime nutrient for crop production and carbon-based functions associated with soil quality. The objective of our study (2012 to 2019) was to evaluate the impact of variable rates of N fertilization on soil organic carbon (C) pools and their stocks, stratification, and lability in subtropical wheat (Triticum aestivum)-mungbean (Vigna radiata)-rice (Oryza sativa L) agroecosystems. The field experiment was conducted in a randomized complete block design (RCB) with N fertilization at 60, 80, 100, 120, and 140% of the recommended rates of wheat (100 kg/ha), mungbean (20 kg/ha), and rice (80 kg/ha), respectively. Composite soils were collected at 0-15 and 15-30 cm depths from each replicated plot and analyzed for microbial biomass (MBC), basal respiration (BR), total organic C (TOC), particulate organic C (POC), permanganate oxidizable C (POXC), carbon lability indices, and stratification. N fertilization (120 and 140%) significantly increased the POC at both depths; however, the effect was more pronounced in the surface layer. Moreover, N fertilization (at 120% and 140%) significantly increased the TOC and labile C pools when compared to the control (100%) and the lower rates (60 and 80%). N fertilization significantly increased MBC, C pool (CPI), lability (CLI), and management indices (CMI), indicating improved and efficient soil biological activities in such systems. The MBC and POC stocks were significantly higher with higher rates of N fertilization (120% and 140%) than the control. Likewise, higher rates of N fertilization significantly increased the stocks of labile C pools. Equally, the stratification values for POC, MBC, and POXC show evidence of improved soil quality because of optimum N fertilization (120-140%) to maintain and/or improve soil quality under rice-based systems in subtropical climates.


Assuntos
Carbono/análise , Nitrogênio/análise , Oryza/metabolismo , Solo/química , Triticum/metabolismo , Vigna/metabolismo , Biomassa , Produção Agrícola/métodos , Ecossistema , Fertilizantes/análise , Oryza/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Vigna/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA