Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164126

RESUMO

The aim of this work was to evaluate the effect of the concentration of gelatin (G) (3-6 g), whey protein (W) (2.5-7.5 g) and chitosan (C) (0.5-2.5 g) on the physical, optical and mechanical properties of composite edible films (CEFs) using the response surface methodology (RSM), as well as optimizing the formulation for the packaging of foods. The results of the study were evaluated via first- and second-order multiple regression analysis to obtain the determination coefficient values with a good fit (R ˃ 0.90) for each of the response variables, except for the values of solubility and b*. The individual linear effect of the independent variables (the concentrations of gelatin, whey protein and chitosan) significantly affected (p ≤ 0.05) the water vapor permeability (WVP), strength and solubility of the edible films. The WVP of the edible films varied from 0.90 to 1.62 × 10-11 g.m/Pa.s.m2, the resistance to traction varied from 0.47 MPa to 3.03 MPa and the solubility varied from 51.06% to 87%. The optimized values indicated that the CEF prepared with a quantity of 4 g, 5 g and 3 g of gelatin, whey protein and chitosan, respectively, provided the CEF with a smooth, continuous and transparent surface, with L values that resulted in a light-yellow hue, a lower WVP, a maximum strength (resistance to traction) and a lower solubility. The results revealed that the optimized formulation of the CEF of G-W-C allowed a good validation of the prediction model and could be applied, in an effective manner, to the food packaging industry, which could help in mitigating the environmental issues associated with synthetic packaging materials.


Assuntos
Quitosana/química , Filmes Comestíveis , Gelatina/química , Proteínas do Soro do Leite/química , Permeabilidade , Vapor
2.
Arch Biochem Biophys ; 681: 108255, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31904364

RESUMO

Preeclampsia is a multisystemic disorder of pregnancy that causes perinatal morbidity and mortality. Studies published in the last decade have contributed to a better understanding of physiopathogenesis through key mechanisms involved, such as altered immune response, endothelial dysfunction, oxidative stress and systemic inflammatory response, as well as genetic susceptibility. Oxidative stress (OS) plays an important role in the development of preeclampsia, since it alters placental remodeling and placental vascular endothelial dysfunction, resulting in an ischemia/reperfusion injury with an increase in xanthine oxidase activity that produces high levels of reactive oxygen species (ROS). ROS can be generated through many pathways within cells, mitochondria, endoplasmic reticulum (ER) and enzymes such as NADPH oxidase are the most important sources, causing widespread and indiscriminate damage to cells and tissues, which leads to an intravascular inflammatory response and maternal systemic endothelial dysfunction characteristic of this prenatal syndrome. Therefore, the following review aims to identify the main risk factors and the role of OS as a pathophysiological mechanism in the development of preeclampsia.


Assuntos
Estresse Oxidativo , Pré-Eclâmpsia/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Feminino , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Xantina Oxidase/metabolismo
3.
Environ Res ; 182: 108992, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31830696

RESUMO

Pharmaceuticals are used for the prevention or treatment of diseases, and due to their manufacturing process they are continuously released to water bodies. One of the pharmacological groups detected in aquatic environments is non-steroidal anti-inflammatory drugs (NSAIDs) at trace concentrations. This study evaluated the survival and malformation rate in oocytes and larvae of Cyprinus carpio (C. carpio) after exposure to different proportions of an industrial effluent. Initially, the industrial effluent was sampled from an NSAID manufacturing plant located in the city of Toluca, State of Mexico, subsequently the physicochemical characterization and determination of the concentration of chemical compounds present were carried out. On the other hand, the lethal concentration 50 (LC50) and the effective concentration 50 (EC50) were calculated to determine the teratogenic index (TI), as well as the alterations to the embryonic development and the teratogenic effects on oocytes and larvae of C. carpio at the following proportions of the industrial effluent: 0.1, 0.3, 0.5, 0.7, 0.9 and 1.1%, following the Test Guideline 236, which describes a Fish Embryo Acute Toxicity test, the exposure times were 12, 24, 48, 72 and 96 h post-fertilization. The contaminants detected were NaClO (2.6 mg L-1) and NSAIDs such as diclofenac, ibuprofen, naproxen and paracetamol in the range of 1.09-2.68 mg L-1. In this study the LC50 was 0.275%, the EC50 0.133% and the TI 2.068. Several malformations were observed in all proportions of the industrial effluent evaluated, however the most severe such as spina bifida and paravertebral hemorrhage were observed at the highest effluent proportion. The industrial effluent evaluated in this study represents a risk for organisms that are in contact with it, since it contains chemical compounds that induce embryotoxic and teratogenic effects as observed in oocytes and larvae of C. carpio.


Assuntos
Carpas , Resíduos Industriais , Teratogênicos , Poluentes Químicos da Água , Animais , Larva , México , Oócitos/efeitos dos fármacos , Teratogênicos/toxicidade , Poluentes Químicos da Água/toxicidade
4.
Ecotoxicol Environ Saf ; 135: 98-105, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27721126

RESUMO

Metals such as Al, Fe and Hg are used in diverse anthropogenic activities. Their presence in water bodies is due mainly to domestic, agricultural and industrial wastewater discharges and constitutes a hazard for the organisms inhabiting these environments. The present study aimed to evaluate geno- and cytotoxicity induced by Al, Fe, Hg and the mixture of these metals on blood of the common carp Cyprinus carpio. Specimens were exposed to the permissible limits in water for human use and consumption according to the pertinent official Mexican norm [official Mexican norm NOM-127-SSA1-1994] Al (0.2mgL-1), Fe (0.3mgL-1), Hg (0.001mgL-1) and their mixture for 12, 24, 48, 72 and 96h. Biomarkers of genotoxicity (comet assay and micronucleus test) and cytotoxicity (caspase-3 activity and TUNEL assay) were evaluated. Significant increases relative to the control group (p<0.05) were observed in all biomarkers at all exposure times in all test systems; however, damage was greater when the metals were present as a mixture. Furthermore, correlations between metal concentrations and biomarkers of geno- and cytotoxicity were found only at certain exposure times. In conclusion, Al, Fe, Hg and the mixture of these metals induce geno- and cytotoxicity on blood of C. carpio.


Assuntos
Alumínio/toxicidade , Carpas , Ferro/toxicidade , Mercúrio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Carpas/genética , Carpas/metabolismo , Caspase 3/metabolismo , Ensaio Cometa , Dano ao DNA , Testes para Micronúcleos
5.
Environ Toxicol ; 32(4): 1102-1120, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27403921

RESUMO

Amoxicillin (AMX) is one of the most commonly prescribed antibiotics around the world due to its broad-spectrum activity against different bacterial strains as well as its use as a growth promoter in animal husbandry. Although residues of this antibacterial agent have been found in water bodies in diverse countries, there is not enough information on its potential toxicity to aquatic organisms such as the common carp Cyprinus carpio. This study aimed to evaluate AMX-induced oxidative stress in brain, gill, liver and kidney of C. carpio. Carp were exposed to three different concentrations of AMX (10 ng/L, 10 µg/L, 10 mg/L) for 12, 24, 48, 72, and 96 h, and the following biomarkers were evaluated: lipid peroxidation (LPX), hydroperoxide content (HPC), protein carbonyl content (PCC) and activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Amoxicillin and its main degradation product amoxicilloic acid (AMA) were determined by high performance liquid chromatography coupled with electrochemical detection and UV detection (HPLC-EC-UV). Significant increases in LPX, HPC, and PCC (P < 0.05) were found in all study organs, particularly kidney, as well as significant changes in antioxidant enzymes activity. Amoxicilloic acid in water is concluded to induce oxidative stress in C. carpio, this damage being highest in kidney. The biomarkers used are effective for the assessment of the environmental impact of this agent on aquatic species. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1102-1120, 2017.


Assuntos
Amoxicilina/análogos & derivados , Amoxicilina/toxicidade , Poluentes Químicos da Água/toxicidade , Amoxicilina/análise , Amoxicilina/metabolismo , Amoxicilina/farmacocinética , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Carpas/metabolismo , Catalase/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Glutationa Peroxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Especificidade de Órgãos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/farmacocinética
6.
Environ Toxicol ; 32(5): 1637-1650, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28101901

RESUMO

Thirty million people worldwide consume each day nonsteroidal anti-inflammatory drugs (NSAIDs), a heterogeneous group of pharmaceuticals used for its analgesic, antipyretic, and anti-inflammatory properties. Recent studies report high NSAID concentrations in wastewater treatment plant effluents, in surface, ground, and drinking water, and in sediments. NSAIDs are also known to induce toxicity on aquatic organisms. However, toxicity in natural ecosystems is not usually the result of exposure to a single substance but to a mixture of toxic agents, yet only a few studies have evaluated the toxicity of mixtures. The aim of this study was to evaluate the toxicity induced by diclofenac (DCF), ibuprofen (IBP), and their mixture on a species of commercial interest, the common carp Cyprinus carpio. The median lethal concentration of IBP and DCF was determined, and oxidative stress was evaluated using the following biomarkers: lipid peroxidation and activity of the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase. Cyto-genotoxicity was evaluated by micronucleus test, comet assay, and the specific activity of caspase-3. Results show that DCF, IBP, and a mixture of these pharmaceuticals induced free radical production, oxidative stress and cyto-genotoxicity in tissues of C. carpio. However, a greater effect was elicited by the mixture than by either pharmaceutical alone in some biomarkers evaluated, particularly in gill. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1637-1650, 2017.


Assuntos
Carpas , Dano ao DNA/efeitos dos fármacos , Diclofenaco/toxicidade , Ibuprofeno/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Anti-Inflamatórios não Esteroides/toxicidade , Antioxidantes/metabolismo , Carpas/metabolismo , Ensaio Cometa , Combinação de Medicamentos , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos
7.
Ecotoxicology ; 24(3): 527-39, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25512029

RESUMO

Diclofenac (DCF) has been detected in significant amounts in municipal treated wastewater effluent. Diverse studies report that trace concentrations of DCF may induce toxic effects on different aquatic organisms as well as developmental, reproductive and renal damage. This study aimed to determine whether short and long-term exposure to DCF alter the oxidative stress (OS) status in blood, muscle, gills, brain and liver of common carp Cyprinus carpio. The median lethal concentration of DCF at 96 h (96-h LC50) and subsequently the lowest observed adverse effect level were determined. Carp were exposed (short and long-term) to the latter value for different exposure times (4 and 24 days) and the following biomarkers were evaluated in gill, brain, liver and blood: hydroperoxides content (HPC), lipid peroxidation (LPX), protein carbonyl content (PCC) and the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Also, the DCF was determined by LC-MS/MS. Significant increases in HPC, LPX and PCC were observed respect to control (P < 0.05) particularly in blood, muscle, gill, brain and liver. SOD, CAT and GPx activity also increased in these organs, with respect to controls (P < 0.05). DCF concentrations decreased and increased in water system and carp, respectively. Cyprinus carpio exposed to DCF was affected in OS status during the initial days of the study (at 4 days), exhibiting an increased response at 24 days in blood and liver. In contrast, a decrease was observed in muscle, gills and brain at 24 days with respect to 4 days. In conclusion, DCF induces OS on blood, muscle, gills, brain and liver in the carp C. carpio in short and long-term exposure. The biomarkers employed in this study are useful in the assessment of the environmental impact of this agent on aquatic species.


Assuntos
Carpas/metabolismo , Diclofenaco/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Fatores de Tempo
8.
Ecotoxicology ; 24(1): 181-93, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25336044

RESUMO

The very wide range of activities performed in hospitals (care, diagnosis, hygiene, maintenance, research) require the use of a large variety of potentially ecotoxic substances such as surfactants, metals, disinfectants and pharmaceuticals. This study aimed to determine oxidative stress in the common carp Cyprinus carpio induced by hospital wastewater (HWW) in Mexico. The median lethal concentration (LC50) and subsequently the lowest observed adverse effect level were determined. Carp were exposed to the latter value (0.5 %) for 24, 48, 72 and 96 h, and the following biomarkers were evaluated in gill, brain, liver and blood: hydroperoxide content (HPC), malondialdehyde (MDA) content, protein carbonyl content (PCC) and activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Significant increases in HPC, MDA content and PCC were observed in exposed specimens, particularly in gill, liver and brain. SOD and CAT activity also increased in liver and brain. In conclusion, this particular HWW induces oxidative stress on C. carpio, this damage being most evident in gill, liver and brain.


Assuntos
Carpas/metabolismo , Hospitais , Estresse Oxidativo/efeitos dos fármacos , Águas Residuárias/toxicidade , Animais , Biomarcadores/análise , Catalase/metabolismo , Monitoramento Ambiental , Peróxido de Hidrogênio/análise , Dose Letal Mediana , Malondialdeído/análise , México , Carbonilação Proteica , Superóxido Dismutase/metabolismo , Testes de Toxicidade Aguda , Águas Residuárias/química
9.
Drug Chem Toxicol ; 37(4): 391-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24393029

RESUMO

CONTEXT: Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used pharmaceuticals in Mexico, but there is not proper regulation on the sale, use and disposal. These drugs can enter water bodies by diverse pathways, attaining significant concentrations and inducing damage on hydrobionts. OBJECTIVE: To evaluate the oxidative stress and consequent damage to genetic material induced by DCF, IBP and NPX on Daphnia magna. METHODS: The acute toxicity assays were performed to 48-h by nonsteroidal anti-inflammatory drugs evaluated. A sublethal assay were done after 48 h of exposure to DCF, IBP and NPX added to water with the concentration equivalent to the lowest observed adverse effect level (LOAEL), 9.7 mg/L for DCF, 2.9 mg/L for IBP and 0.017 mg/L for NPX. The DNA damage (comet assay) was evaluated at 12, 48 and 96 h. The oxidative biomarkers were evaluated: lipid peroxidation; protein carbonyl content; activity of the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase. RESULTS: D. magna exposed to DCF, IBP and NPX showed a significant increase (p < 0.05) with respect to controls in LPX. PCC was increased in IBP exposure. SOD and CAT activity were increased by exposure to IBP and NPX. GPX shows a significant increase with respect to control in IBP and DCF exposure and significant decrease by NPX exposure. DNA damage was observed in 48 and 96 h. DISCUSSION AND CONCLUSION: DCF, IBP and NPX were responsible of alterations in biochemical biomarkers evaluated and DNA damage.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Dano ao DNA/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Daphnia/efeitos dos fármacos , Diclofenaco/toxicidade , Ibuprofeno/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , México , Testes de Mutagenicidade , Naproxeno/toxicidade , Nível de Efeito Adverso não Observado , Carbonilação Proteica/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fatores de Tempo , Testes de Toxicidade Aguda
10.
Arch Environ Contam Toxicol ; 67(2): 281-95, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24916851

RESUMO

Many toxic xenobiotics that enter the aquatic environment exert their effects through redox cycling. Oxidative stress, which incorporates both oxidative damage and antioxidant defenses, is a common effect induced in organisms exposed to xenobiotics in their environment. The results of the present study aimed to determine the oxidative stress induced in the common carp Cyprinus carpio by contaminants [metals and nonsteroidal anti-inflammatory drugs (NSAIDs)] present in Madín Reservoir. Five sampling stations (SSs), considered to have the most problems due to discharges, were selected. Carp were exposed to water from each SS for 96 h, and the following biomarkers were evaluated in gill, blood, and muscle: hydroperoxide content, lipid peroxidation, protein carbonyl content, and the activity of antioxidant enzymes superoxide dismutase and catalase. Results show that contaminants (metals and NSAIDs) present in water from the different SSs induce oxidative stress. Thus, water in this reservoir is contaminated with xenobiotics that are hazardous to C. carpio, a species consumed by the local human population.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Carpas/fisiologia , Metais/toxicidade , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Carpas/sangue , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , México , Músculos/efeitos dos fármacos , Músculos/metabolismo , Superóxido Dismutase/metabolismo
11.
Environ Monit Assess ; 186(11): 7259-71, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25004860

RESUMO

Toxicity in natural ecosystems is usually not due to exposure to a single substance, but is rather the result of exposure to mixtures of toxic substances. Knowing the effects of contaminants as a mixture compared to their effects in isolated form is therefore important. This study aimed to evaluate the oxidative stress induced by binary mixtures of diclofenac with paracetamol, ibuprofen, naproxen, and acetylsalicylic acid and by these nonsteroidal anti-inflammatory drugs (NSAIDs) in isolated form, using Hyalella azteca as a bioindicator. The median lethal concentration (LC50) and the lowest observed adverse effect level (LOAEL) of each NSAID were obtained. Amphipods were exposed for 72 h to the latter value in isolated form and as binary mixtures. The following biomarkers were evaluated: lipid peroxidation (LPX), protein carbonyl content (PCC), and activity of the antioxidant enzymes: superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Significant increases in LPX and PCC with respect to the control group (p ≤ 0.05) were induced by NSAIDs both in isolated form and as binary mixtures. Changes in SOD, CAT, and GPx activity likewise occurred with NSAIDs in isolated form and as binary mixtures. In conclusion, NSAIDs used in this study induce oxidative stress on H. azteca both in isolated form and as binary mixtures, and the interactions occurring between these pharmaceuticals are probably antagonistic in type.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Poluentes Químicos da Água/toxicidade , Acetaminofen/toxicidade , Anfípodes/fisiologia , Animais , Aspirina/toxicidade , Biomarcadores/metabolismo , Catalase/metabolismo , Diclofenaco/toxicidade , Glutationa Peroxidase/metabolismo , Ibuprofeno/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Naproxeno/toxicidade , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica , Superóxido Dismutase/metabolismo
12.
Ecotoxicol Environ Saf ; 92: 32-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23474065

RESUMO

Due to its analgesic properties, diclofenac (DCF) is one of the most commonly used non-steroidal anti-inflammatory drugs (NSAIDs). While residue from this pharmaceutical agent has been found in diverse water bodies in various countries, there is not enough information of its potential toxicity on aquatic organisms, particularly in species which are economically valuable due to their high consumption by humans, such as the common carp Cyprinus carpio. This study aimed to evaluate potential DCF-induced oxidative stress in brain, liver, gill and blood of C. carpio. The median lethal concentration of DCF at 96h (96-h LC50) was determined and used to establish the concentration equivalent to the lowest observed adverse effect level (LOAEL). Carp specimens were exposed to this concentration for different exposure times (12, 24, 48, 72 and 96h) and the following biomarkers were evaluated: lipid peroxidation (LPX) and the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Also, the DCF and 4-hydroxy DCF was determined by LC-MS/MS. Results show a statistically significant LPX increase (P<0.05) in liver and gill mainly as well as significant changes in the activity of the antioxidant enzymes evaluated in these organs, with respect to controls (P<0.05). The DCF concentrations decreased in water system and increased in the carp. The DCF biotransformation to 4-hydroxy DCF was observed to 12h. The pharmaceutical agent DCF is concluded to induce oxidative stress on the common carp C. carpio, with the highest incidence of oxidative damage occurring in liver and gill. Furthermore, the biomarkers employed in this study are useful in the assessment of the environmental impact of this agent on aquatic species.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Diclofenaco/toxicidade , Animais , Biomarcadores/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Carpas/metabolismo , Catalase/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/toxicidade
13.
Ecotoxicol Environ Saf ; 96: 191-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23856122

RESUMO

Aluminum is one of the most abundant elements in nature and is used in diverse industrial processes. As a result, it contaminates aquatic ecosystems, inducing damage on associated biota. In fish, it has been observed to induce hypoxia, hypercapnia, metabolic acidosis and respiratory arrest. Although there is little information on Al-induced cytotoxicity and DNA damage, this type of studies are essential in order to identify the mechanisms of action of this metal. The cytotoxic and genotoxic effects induced by Al on common carp (Cyprinus carpio) erythrocytes were determined in specimens exposed to 0.05, 120 and 239mgAlL(-1) in static exposure systems. Blood samples were taken at 12, 24, 48, 72 and 96h, erythrocytes were separated, and the following were evaluated: frequency of micronuclei and frequency of terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells, blood Al levels, lipid peroxidation, protein carbonyl content, and activity of the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase. The results show that tested aluminum concentrations produces oxidative stress (increase in lipid peroxidation degree and oxidized proteins content, as well as decrease in antioxidant enzymes activity) and induced higher frequencies of micronuclei and TUNEL-positive cells, so this metal can be considered as a cytotoxic and genotoxic agent for erythrocytes of common carp.


Assuntos
Alumínio/toxicidade , Carpas/fisiologia , Eritrócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Carpas/metabolismo , Catalase/metabolismo , Dano ao DNA/efeitos dos fármacos , Eritrócitos/química , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Testes de Mutagenicidade , Carbonilação Proteica/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fatores de Tempo , Poluentes Químicos da Água/toxicidade
14.
J Food Sci ; 88(4): 1409-1419, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36851824

RESUMO

Jumbo squid (Dosidicus gigas) is a commercially valuable mollusk in Mexico; 80% of its body is edible. Despite the high protein content (∼18%) and low cholesterol content of this species, its high proteolytic activity (microbial and endogenous enzymes) induces protein degradation and consequent reduction in functional properties from a structural viewpoint. Gelation capacity (texture profile of the gels obtained), solubility, water holding capacity, foaming capacity, emulsification capacity, and emulsion stability were evaluated in protein concentrates obtained by foam-aided pH-shift processing: (A) myofibrillar protein extraction with distilled water and no pH-shifting; (B) alkaline solubilization and isoelectric precipitation; (C) acidic solubilization and isoelectric precipitation; and (D) process A and isoelectric precipitation. Process B showed superior gelation capacity, D had high emulsion stability across a wide range of pH values (4.0-8.0) and C lower plate counts of aerobic mesophilic. Therefore, all three alternative extraction processes showed techno-functional advantages. PRACTICAL APPLICATION: Jumbo squid is an abundant protein source in México, most of which is exported. Functional and physicochemical properties of muscle protein were improved by pH-shift processing. The recovered protein showed modifications of technological properties, using one of the methods described can lead to produce a protein extract with the most desirable attributes, such as foaming, emulsifying, or gelling capacities. The functional and physicochemical properties of protein from squid can be enhanced by selecting a certain pH-shift processing, depending on the desirable use. There is a broad perspective on the use of these protein extracts as ingredients or additives.


Assuntos
Decapodiformes , Proteínas Musculares , Animais , Decapodiformes/química , Emulsões , Proteínas Musculares/química , Alimentos Marinhos/análise , Água , Concentração de Íons de Hidrogênio
15.
Reprod Toxicol ; 120: 108422, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330176

RESUMO

Cadmium (Cd) is often detected in the environment due to its wide use in industry; also, NSAIDs are one of the most consumed pharmaceuticals, particularly diclofenac (DCF). Several studies have reported the presence of both contaminants in water bodies at concentrations ranging from ng L-1 to µg L-1; in addition, they have shown that they can induce oxidative stress in aquatic species and disturb signal transduction, cell proliferation, and intercellular communication, which could lead to teratogenesis. Spirulina has been consumed as a dietary supplement; its antioxidant, anti-inflammatory, neuroprotective, and nutritional properties are well documented. This work aimed to evaluate if Spirulina reduces the damage induced by Cd and DCF mixture in Xenopus laevis at early life stages. FETAX assay was carried out: 20 fertilized oocytes were exposed to seven different treatments on triplicate, control, Cd (24.5 µg L-1), DCF (149 µg L-1), Cd + DCF, Cd+DCF+Spirulina (2 mg L-1), Cd+DCF+Spirulina (4 mg L-1), Cd+DCF+Spirulina (10 mg L-1), malformations, mortality, and growth were evaluated after 96 h, also lipid peroxidation, superoxide dismutase and catalase activity were determined after 192 h. Cd increased DCF mortality, Cd and DCF mixture increased the incidence of malformations as well as oxidative damage; on the other hand, the results obtained show that Spirulina can be used to reduce the damage caused by the mixture of Cd and DCF since it promotes growth, reduce mortality, malformations, and oxidative stress in X. laevis.


Assuntos
Anti-Inflamatórios não Esteroides , Spirulina , Animais , Anti-Inflamatórios não Esteroides/toxicidade , Spirulina/metabolismo , Xenopus laevis , Cádmio/toxicidade , Diclofenaco/toxicidade , Estresse Oxidativo , Antioxidantes/farmacologia , Metais
16.
Sci Total Environ ; 887: 164057, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37178842

RESUMO

Hospital effluents represent a threat to the environment owing to the content of toxic substances capable of altering the structure and function of ecosystems. Despite the available information about the impact of hospital effluents on aquatic organisms, the molecular mechanism underlying this process has received little or no attention. The present study aimed to evaluate the oxidative stress and gene expression induced by different proportions (2 %, 2.5 %, 3 % and 3.5 %) of hospital effluent treated by hospital wastewater treatment plant (HWWTP) in liver, gut, and gills of Danio rerio at different exposure times. Significant increases in the levels of protein carbonylation content (PCC), hydroperoxides content (HPC), lipoperoxidation level (LPX) and superoxide dismutase (SOD) and catalase (CAT) activity were observed in most of the organs evaluated at the four proportions tested with respect to the control group (p < 0.05). It was found that at longer exposure times there is a lower response in SOD activity, suggesting catalytic depletion due to the oxidative environment at the intracellular level. The lack of complementarity between SOD and mRNA activity patterns indicates that the activity itself is subordinated to post-transcriptional processes. Upregulation of transcripts related to antioxidant processes (sod, cat, nrf2), detoxification (cyp1a1) and apoptosis (bax, casp6, and casp9) was observed in response to oxidative imbalance. On the other hand, the metataxonomic approach allowed the characterization of pathogenic bacterial genera such as Legionella, Pseudomonas, Clostridium XI, Parachlamydia and Mycobacterium present in the hospital effluent. Our findings indicate that although hospital effluent was treated by HWWTP, it caused oxidative stress damage and disrupted gene expression by decreasing the antioxidant response in Danio rerio.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Antioxidantes/metabolismo , Ecossistema , Estresse Oxidativo , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade , Hospitais , Expressão Gênica
17.
Chemosphere ; 330: 138729, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37080469

RESUMO

Bisphenol A (BPA) is a micro-pollutant found in various environmental matrices at concentrations as low as ng/L. Recent studies have shown that this compound can cause oxidative damage and neurotoxic effects in aquatic organisms. However, there is a lack of research investigating the effects of BPA at environmentally relevant concentrations. Therefore, this study aimed to assess the neurotoxic effects of acute BPA exposure (96 h) at environmentally relevant concentrations (220, 1180, and 1500 ng/L) in adult zebrafish (Danio rerio). The Novel Tank trial was used to evaluate fish swimming behavior, and our results indicate that exposure to 1500 ng/L of BPA reduced the total distance traveled and increased freezing time. Furthermore, the evaluation of biomarkers in the zebrafish brain revealed that BPA exposure led to the production of reactive oxygen species and increased acetylcholinesterase activity. Gene expression analysis also indicated the overexpression of mbp, α1-tubulin, and manf in the zebrafish brain. Based on our findings, we concluded that environmentally relevant concentrations of BPA can cause anxiety-like behavior and neurotoxic effects in adult zebrafish.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/metabolismo , Estresse Oxidativo , Encéfalo/metabolismo , Expressão Gênica , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
18.
Sci Total Environ ; 898: 165528, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451451

RESUMO

In recent years and as a result of the Covid-19 pandemic, the consumption of dexamethasone (DXE) has increased. This favors that this corticosteroid is highly released in aquatic environments, generating deleterious effects in aquatic organisms. The information on the toxic effects of DXE in the environment is still limited. Thus, the objective of this work was to determine whether DXE at short-term exposure can cause alterations to embryonic development and alteration of oxidative stress-related gene expression patterns in Cyprinus carpio. For this purpose, common carp embryos (2 hpf) were exposed to realistic concentrations of DXE until 96 hpf. Alterations to embryonic development were evaluated at 12, 24, 48, 72 and 96 hpf. In addition, oxidative stress in carp embryos at 72 and 96 hpf was evaluated by cellular oxidation biomarkers (lipoperoxidation level, hydroperoxide and carbonyl protein content) and antioxidant enzymes activities (superoxide dismutase and catalase). Oxidative stress-related gene expression (sod, cat and gpx1) was also evaluated. Our results showed that DXE concentrations above 35 ng/L are capable of producing alterations to embryonic development in 50 % of the embryo population. Furthermore, DXE was able to induce alterations such as scoliosis, hypopigmentation, craniofacial malformations, pericardial edema and growth retardation, leading to the death of half of the population at 50 ng/L of DXE. Concerning oxidative stress, the results demonstrated that DXE induce oxidative damage on the embryos of C. carpio. In conclusion, DXE is capable of altering embryonic development and generating oxidative stress in common carp C. carpio.


Assuntos
COVID-19 , Carpas , Poluentes Químicos da Água , Animais , Humanos , Carpas/metabolismo , Bioacumulação , Pandemias , Peroxidação de Lipídeos , Poluentes Químicos da Água/toxicidade , Biomarcadores/metabolismo , Tratamento Farmacológico da COVID-19 , Estresse Oxidativo , Antioxidantes/metabolismo , Desenvolvimento Embrionário , Expressão Gênica , Dexametasona/toxicidade
19.
Sci Total Environ ; 871: 161858, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716872

RESUMO

Oxidative imbalance as a pathophysiological mechanism has been reported as an adverse outcome in pregnant women who develop preeclampsia and in their newborns. Furthermore, emerging evidence suggests the same mechanism by which air pollutants may exert their toxic effects. Therefore, the objective of the study was to evaluate the biomarkers of oxidative stress and their relationship with neonatal disease in premature newborns from mothers with preeclampsia exposed to air pollution during pregnancy. The data of air pollutants (PM2.5, PM10 and ozone) were collected at fixed monitoring stations. Oxidative and antioxidant status markers were obtained through special techniques in women with preeclampsia and in umbilical cord blood of their premature newborns. The oxidative stress markers were significantly higher in women with preeclampsia and their newborns who were exposed to higher levels of ambient air pollutants in the first and second trimester of pregnancy. Neonatal diseases are associated with preeclampsia in pregnancies, specifically intrauterine growth restriction (IUGR) and necrotizing enterocolitis (NEC). A significant correlation was identified in the levels of prooxidant agents and antioxidant enzyme activity in the presence of neonatal diseases associated with preeclampsia. There is increased oxidative damage in both the maternal and fetal circulation in women who develop preeclampsia exposed to air pollution during pregnancy. Therefore, these pregnancies complicated by preeclampsia have a greater adverse outcome as neonatal disease in the preterm infant.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças do Recém-Nascido , Pré-Eclâmpsia , Complicações na Gravidez , Lactente , Recém-Nascido , Humanos , Feminino , Gravidez , Projetos Piloto , Resultado da Gravidez , Antioxidantes , Recém-Nascido Prematuro , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Estresse Oxidativo , Doenças do Recém-Nascido/induzido quimicamente , Exposição Materna/efeitos adversos , Material Particulado/toxicidade , Material Particulado/análise
20.
Sci Total Environ ; 894: 165016, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348709

RESUMO

Caffeine (CAF) is an alkaloid, which acts as a central nervous system (CNS) stimulant drug. In recent years, CAF has been recurrently detected in water bodies, generating deleterious effects in aquatic organisms. The information on the toxic effects of CAF in the environment is still limited. Thus, the objective of this work was to determine whether CAF at environmentally relevant concentrations (CAF concentrations were selected based on studies on the worldwide occurrence of this compound and on the toxicity of CAF in aquatic species) is capable of inducing alterations to embryonic development and alteration of oxidative stress-related gene expression patterns in Cyprinus carpio. For this purpose, common carp embryos (2 hpf) were exposed to realistic concentrations of CAF until 96 hpf. Alterations to embryonic development and teratogenic effects were evaluated at 12, 24, 48, 72 and 96 hpf. In addition, oxidative stress in carp embryos at 72 and 96 hpf was evaluated by cellular oxidation biomarkers (lipoperoxidation level, hydroperoxide content and carbonyl protein content) and antioxidant enzymes activities (superoxide dismutase and catalase). Oxidative stress-related gene expression (sod, cat and gpx1) was also evaluated. Our results showed that CAF concentrations above 500 ng/L are capable of producing teratogenic effects. Furthermore, CAF was able to induce alterations such cardiac malformations, somite alterations, pericardial edema and chorda malformations. Concerning oxidative stress, the results demonstrated that CAF induce oxidative damage on the embryos of C. carpio. Our outcomes also showed up-regulations in genes related to antioxidant activity sod, cat and gpx by CAF exposure. In conclusion CAF at environmentally relevant concentrations is able to alter the embryonic development of common carp by the oxidative stress pathway. Based on the above evidence, it can be inferred that acute exposure to CAF can lead to a toxic response that significantly harms fish's health, adversely affecting their essential organs' functioning.


Assuntos
Carpas , Teratogênese , Poluentes Químicos da Água , Animais , Carpas/metabolismo , Cafeína/toxicidade , Bioacumulação , Peroxidação de Lipídeos , Poluentes Químicos da Água/toxicidade , Biomarcadores/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA