Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(23): 231101, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35749171

RESUMO

Scientific analysis for the gravitational wave detector LISA will require theoretical waveforms from extreme-mass-ratio inspirals (EMRIs) that extensively cover all possible orbital and spin configurations around astrophysical Kerr black holes. However, on-the-fly calculations of these waveforms have not yet overcome the high dimensionality of the parameter space. To confront this challenge, we present a user-ready EMRI waveform model for generic (eccentric and inclined) orbits in Kerr spacetime, using an analytical self-force approach. Our model accurately covers all EMRIs with arbitrary inclination and black hole spin, up to modest eccentricity (≲0.3) and separation (≳2-10 M from the last stable orbit). In that regime, our waveforms are accurate at the leading "adiabatic" order, and they approximately capture transient self-force resonances that significantly impact the gravitational wave phase. The model fills an urgent need for extensive waveforms in ongoing data-analysis studies, and its individual components will continue to be useful in future science-adequate waveforms.

2.
Phys Rev Lett ; 113(16): 161101, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25361245

RESUMO

For a self-gravitating particle of mass µ in orbit around a Kerr black hole of mass M ≫ µ, we compute the O(µ/M) shift in the frequency of the innermost stable circular equatorial orbit due to the conservative piece of the gravitational self-force acting on the particle. Our treatment is based on a Hamiltonian formulation of the dynamics in terms of geodesic motion in a certain locally defined effective smooth spacetime. We recover the same result using the so-called first law of binary black-hole mechanics. We give numerical results for the innermost stable circular equatorial orbit frequency shift as a function of the black hole's spin amplitude, and compare with predictions based on the post-Newtonian approximation and the effective one-body model. Our results provide an accurate strong-field benchmark for spin effects in the general-relativistic two-body problem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA