Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 29(39): 395702, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-29972377

RESUMO

Studying the electrical and structural properties of the interface of the gate oxide (SiO2) with silicon carbide (4H-SiC) is a fundamental topic, with important implications for understanding and optimising the performances of metal-oxide-semiconductor field effect transistor (MOSFETs). In this paper, near interface oxide traps (NIOTs) in lateral 4H-SiC MOSFETs were investigated combining transient gate capacitance measurements (C-t) and state of the art scanning transmission electron microscopy in electron energy loss spectroscopy (STEM-EELS) with sub-nm resolution. The C-t measurements as a function of temperature indicated that the effective NIOTs discharge time is temperature independent and electrons from NIOTs are emitted toward the semiconductor via-tunnelling. The NIOTs discharge time was modelled also taking into account the interface state density in a tunnelling relaxation model and it allowed us to locate traps within a tunnelling distance of up to 1.3 nm from the SiO2/4H-SiC interface. On the other hand, sub-nm resolution STEM-EELS revealed the presence of a non-abrupt (NA) SiO2/4H-SiC interface. The NA interface shows the re-arrangement of the carbon atoms in a sub-stoichiometric SiO x matrix. A mixed sp2/sp3 carbon hybridization in the NA interface region suggests that the interfacial carbon atoms have lost their tetrahedral SiC coordination.

2.
Materials (Basel) ; 12(10)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096689

RESUMO

Today, the introduction of wide band gap (WBG) semiconductors in power electronics has become mandatory to improve the energy efficiency of devices and modules and to reduce the overall electric power consumption in the world. Due to its excellent properties, gallium nitride (GaN) and related alloys (e.g., AlxGa1-xN) are promising semiconductors for the next generation of high-power and high-frequency devices. However, there are still several technological concerns hindering the complete exploitation of these materials. As an example, high electron mobility transistors (HEMTs) based on AlGaN/GaN heterostructures are inherently normally-on devices. However, normally-off operation is often desired in many power electronics applications. This review paper will give a brief overview on some scientific and technological aspects related to the current normally-off GaN HEMTs technology. A special focus will be put on the p-GaN gate and on the recessed gate hybrid metal insulator semiconductor high electron mobility transistor (MISHEMT), discussing the role of the metal on the p-GaN gate and of the insulator in the recessed MISHEMT region. Finally, the advantages and disadvantages in the processing and performances of the most common technological solutions for normally-off GaN transistors will be summarized.

3.
ACS Appl Mater Interfaces ; 9(40): 35383-35390, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28920438

RESUMO

In this work, the conduction mechanisms at the interface of AlN/SiN dielectric stacks with AlGaN/GaN heterostructures have been studied combining different macroscopic and nanoscale characterizations on bare materials and devices. The AlN/SiN stacks grown on the recessed region of AlGaN/GaN heterostructures have been used as gate dielectric of hybrid metal-insulator-semiconductor high electron mobility transistors (MISHEMTs), showing a normally-off behavior (Vth = +1.2 V), high channel mobility (204 cm2 V-1 s-1), and very good switching behavior (ION/IOFF current ratio of (5-6) × 108 and subthreshold swing of 90 mV/dec). However, the transistors were found to suffer from a positive shift of the threshold voltage during subsequent bias sweeps, which indicates electron trapping in the dielectric stack. To get a complete understanding of the conduction mechanisms and of the charge trapping phenomena in AlN/SiN films, nanoscale current and capacitance measurements by conductive atomic force microscopy (C-AFM) and scanning capacitance microscopy (SCM) have been compared with a macroscopic temperature-dependent characterization of gate current in MIS capacitors. The nanoscale electrical analyses showed the presence of a spatially uniform distribution of electrons trapping states in the insulator and the occurrence of a density of 7 × 108 cm-2 of local and isolated current spots at high bias values. These nanoscale conductive paths can be associated with electrically active defects responsible for the trap-assisted current transport mechanism through the dielectric, observed by the temperature-dependent characterization of the gate current. The results of this study can be relevant for future applications of AlN/SiN bilayers in GaN hybrid MISHEMT technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA