Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(15): 2485-2501, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37171606

RESUMO

ATRX is a chromatin remodelling ATPase that is involved in transcriptional regulation, DNA damage repair and heterochromatin maintenance. It has been widely studied for its role in ALT-positive cancers, but its role in neurological function remains elusive. Hypomorphic mutations in the X-linked ATRX gene cause a rare form of intellectual disability combined with alpha-thalassemia called ATR-X syndrome in hemizygous males. Clinical features also include facial dysmorphism, microcephaly, short stature, musculoskeletal defects and genital abnormalities. As complete deletion of ATRX in mice results in early embryonic lethality, the field has largely relied on conditional knockout models to assess the role of ATRX in multiple tissues. Given that null alleles are not found in patients, a more patient-relevant model was needed. Here, we have produced and characterized the first patient mutation knock-in model of ATR-X syndrome, carrying the most common causative mutation, R246C. This is one of a cluster of missense mutations located in the chromatin-binding domain and disrupts its function. The knock-in mice recapitulate several aspects of the patient disorder, including craniofacial defects, microcephaly, reduced body size and impaired neurological function. They provide a powerful model for understanding the molecular mechanisms underlying ATR-X syndrome and testing potential therapeutic strategies.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X , Microcefalia , Talassemia alfa , Animais , Masculino , Camundongos , Talassemia alfa/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Microcefalia/genética , Mutação , Proteínas Nucleares/genética , Proteína Nuclear Ligada ao X/genética , Humanos
2.
Nature ; 572(7767): 125-130, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31341277

RESUMO

Neuromuscular disorders are often caused by heterogeneous mutations in large, structurally complex genes. Targeting compensatory modifier genes could be beneficial to improve disease phenotypes. Here we report a mutation-independent strategy to upregulate the expression of a disease-modifying gene associated with congenital muscular dystrophy type 1A (MDC1A) using the CRISPR activation system in mice. MDC1A is caused by mutations in LAMA2 that lead to nonfunctional laminin-α2, which compromises the stability of muscle fibres and the myelination of peripheral nerves. Transgenic overexpression of Lama1, which encodes a structurally similar protein called laminin-α1, ameliorates muscle wasting and paralysis in mouse models of MDC1A, demonstrating its importance as a compensatory modifier of the disease1. However, postnatal upregulation of Lama1 is hampered by its large size, which exceeds the packaging capacity of vehicles that are clinically relevant for gene therapy. We modulate expression of Lama1 in the dy2j/dy2j mouse model of MDC1A using an adeno-associated virus (AAV9) carrying a catalytically inactive Cas9 (dCas9), VP64 transactivators and single-guide RNAs that target the Lama1 promoter. When pre-symptomatic mice were treated, Lama1 was upregulated in skeletal muscles and peripheral nerves, which prevented muscle fibrosis and paralysis. However, for many disorders it is important to investigate the therapeutic window and reversibility of symptoms. In muscular dystrophies, it has been hypothesized that fibrotic changes in skeletal muscle are irreversible. However, we show that dystrophic features and disease progression were improved and reversed when the treatment was initiated in symptomatic dy2j/dy2j mice with apparent hindlimb paralysis and muscle fibrosis. Collectively, our data demonstrate the feasibility and therapeutic benefit of CRISPR-dCas9-mediated upregulation of Lama1, which may enable mutation-independent treatment for all patients with MDC1A. This approach has a broad applicability to a variety of disease-modifying genes and could serve as a therapeutic strategy for many inherited and acquired diseases.


Assuntos
Genes Modificadores/genética , Terapia Genética/métodos , Laminina/genética , Laminina/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/terapia , Regulação para Cima , Animais , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Progressão da Doença , Feminino , Fibrose/metabolismo , Fibrose/patologia , Edição de Genes , Masculino , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação
3.
Genome Res ; 29(12): 2010-2019, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31754021

RESUMO

The accurate clinical interpretation of human sequence variation is foundational to personalized medicine. This remains a pressing challenge, however, as genome sequencing becomes routine and new functionally undefined variants rapidly accumulate. Here, we describe a platform for the rapid generation, characterization, and interpretation of genomic variants in haploid cells focusing on Niemann-Pick disease type C (NPC) as an example. NPC is a fatal neurodegenerative disorder characterized by a lysosomal accumulation of unesterified cholesterol and glycolipids. In 95% of cases, NPC is caused by mutations in the NPC1 gene, for which more than 200 unique disease-causing variants have been reported to date. Furthermore, the majority of patients with NPC are compound heterozygotes that often carry at least one private mutation, presenting a challenge for the characterization and classification of individual variants. Here, we have developed the first haploid cell model of NPC. This haploid cell model recapitulates the primary biochemical and molecular phenotypes typically found in patient-derived fibroblasts, illustrating its utility in modeling NPC. Additionally, we show the power of CRISPR/Cas9-mediated base editing in quickly and efficiently generating haploid cell models of individual patient variants in NPC. These models provide a platform for understanding the disease mechanisms underlying individual NPC1 variants while allowing for definitive clinical variant interpretation for NPC.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Genoma Humano , Haploidia , Modelos Genéticos , Doença de Niemann-Pick Tipo C/genética , Sequenciamento Completo do Genoma , Linhagem Celular , Humanos
4.
Am J Hum Genet ; 98(1): 90-101, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26686765

RESUMO

Clustered regularly interspaced short palindromic repeat (CRISPR) has arisen as a frontrunner for efficient genome engineering. However, the potentially broad therapeutic implications are largely unexplored. Here, to investigate the therapeutic potential of CRISPR/Cas9 in a diverse set of genetic disorders, we establish a pipeline that uses readily obtainable cells from affected individuals. We show that an adapted version of CRISPR/Cas9 increases the amount of utrophin, a known disease modifier in Duchenne muscular dystrophy (DMD). Furthermore, we demonstrate preferential elimination of the dominant-negative FGFR3 c.1138G>A allele in fibroblasts of an individual affected by achondroplasia. Using a previously undescribed approach involving single guide RNA, we successfully removed large genome rearrangement in primary cells of an individual with an X chromosome duplication including MECP2. Moreover, removal of a duplication of DMD exons 18-30 in myotubes of an individual affected by DMD produced full-length dystrophin. Our findings establish the far-reaching therapeutic utility of CRISPR/Cas9, which can be tailored to target numerous inherited disorders.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Doenças Genéticas Inatas/terapia , Alelos , Expressão Gênica , Doenças Genéticas Inatas/genética , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
5.
Proc Natl Acad Sci U S A ; 110(9): 3561-6, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23401525

RESUMO

KCC2 is a neuron-specific K(+)-Cl(-) cotransporter that is essential for Cl(-) homeostasis and fast inhibitory synaptic transmission in the mature CNS. Despite the critical role of KCC2 in neurons, the mechanisms regulating its function are not understood. Here, we show that KCC2 is critically regulated by the single-pass transmembrane protein neuropilin and tolloid like-2 (Neto2). Neto2 is required to maintain the normal abundance of KCC2 and specifically associates with the active oligomeric form of the transporter. Loss of the Neto2:KCC2 interaction reduced KCC2-mediated Cl(-) extrusion, resulting in decreased synaptic inhibition in hippocampal neurons.


Assuntos
Cloretos/metabolismo , Hipocampo/citologia , Proteínas de Membrana/deficiência , Neurônios/metabolismo , Simportadores/metabolismo , Potenciais de Ação/fisiologia , Sequência de Aminoácidos , Animais , Transporte Biológico , Espectrometria de Massas , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Neurônios/citologia , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Simportadores/química , Ácido gama-Aminobutírico/metabolismo , Cotransportadores de K e Cl-
6.
Exp Physiol ; 99(4): 632-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24443348

RESUMO

Muscle disuse and starvation are often associated with a catabolic response leading to a dramatic loss of skeletal muscle mass. Hibernating animals represent a unique situation where muscle mass is maintained despite prolonged periods of immobilization and lack of nutrition. We analysed the molecular pathways upregulated during hibernation in an obligate hibernator, the 13-lined ground squirrel (Ictidomys tridecemlineatus). Although Akt has an established role in skeletal muscle maintenance, we found that activated Akt was decreased in skeletal muscle of hibernating squirrels. Another serine-threonine kinase, serum- and glucocorticoid-regulated kinase 1 (SGK1), was upregulated during hibernation and contributed to protection from loss of muscle mass via downregulation of proteolysis and autophagy and via an increase in protein synthesis. We extended our observations to non-hibernating animals and demonstrated that SGK1-null mice developed muscle atrophy. These mice displayed an exaggerated response to immobilization and starvation. Furthermore, SGK1 overexpression prevented immobilization-induced muscle atrophy. Taken together, our results identify SGK1 as a novel therapeutic target to combat skeletal muscle loss in acquired and inherited forms of muscle atrophy.


Assuntos
Metabolismo Energético , Hibernação , Proteínas Imediatamente Precoces/metabolismo , Músculo Esquelético/enzimologia , Atrofia Muscular/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Modelos Animais de Doenças , Genótipo , Humanos , Proteínas Imediatamente Precoces/genética , Camundongos Knockout , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Tamanho do Órgão , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Sciuridae , Transdução de Sinais
7.
Nat Biotechnol ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321114

RESUMO

Using transient inhibition of DNA mismatch repair during a permissive stage of development, we demonstrate highly efficient prime editing of mouse embryos with few unwanted, local byproducts (average 58% precise edit frequency, 0.5% on-target error frequency across 13 substitution edits at 8 sites), enabling same-generation phenotyping of founders. Whole-genome sequencing reveals that mismatch repair inhibition increases off-target indels at low-complexity regions in the genome without any obvious phenotype in mice.

8.
Dis Model Mech ; 17(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38881329

RESUMO

MECP2 duplication syndrome (MDS) is a neurodevelopmental disorder caused by tandem duplication of the MECP2 locus and its surrounding genes, including IRAK1. Current MDS mouse models involve transgenic expression of MECP2 only, limiting their applicability to the study of the disease. Herein, we show that an efficient and precise CRISPR/Cas9 fusion proximity-based approach can be utilized to generate an Irak1-Mecp2 tandem duplication mouse model ('Mecp2 Dup'). The Mecp2 Dup mouse model recapitulates the genomic landscape of human MDS by harboring a 160 kb tandem duplication encompassing Mecp2 and Irak1, representing the minimal disease-causing duplication, and the neighboring genes Opn1mw and Tex28. The Mecp2 Dup model exhibits neuro-behavioral abnormalities, and an abnormal immune response to infection not previously observed in other mouse models, possibly owing to Irak1 overexpression. The Mecp2 Dup model thus provides a tool to investigate MDS disease mechanisms and develop potential therapies applicable to patients.


Assuntos
Modelos Animais de Doenças , Duplicação Gênica , Quinases Associadas a Receptores de Interleucina-1 , Deficiência Intelectual Ligada ao Cromossomo X , Proteína 2 de Ligação a Metil-CpG , Animais , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos , Sistemas CRISPR-Cas/genética , Comportamento Animal , Masculino
9.
Dis Model Mech ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39099311

RESUMO

Becker Muscular Dystrophy (BMD) is a rare X-linked recessive neuromuscular disorder frequently caused by in-frame deletions in the DMD gene that result in the production of a truncated, yet functional, dystrophin protein. The consequences of BMD-causing in-frame deletions on the organism are difficult to predict, especially in regard to long-term prognosis. Here, we employed CRISPR-Cas9 to generate a new Dmd del52-55 mouse model by deleting exons 52-55, resulting in a BMD-like in-frame deletion. To delineate the long-term effects of this deletion, we studied these mice over 52 weeks by performing histology and echocardiography analyses and assessing motor functions. Our results suggest that a truncated dystrophin is sufficient to maintain wildtype-like muscle and heart histology and functions in young mice. However, the truncated protein appears insufficient to maintain normal muscle homeostasis and protect against exercise-induced damage at 52 weeks. To further delineate the effects of this exon52-55 in-frame deletion, we performed RNA-Seq pre- and post-exercise and identified several differentially expressed pathways that reflect the abnormal muscle phenotype observed at 52 weeks in the BMD model.

10.
Nat Genet ; 56(7): 1446-1455, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38969834

RESUMO

To maximize the impact of precision medicine approaches, it is critical to identify genetic variants underlying disease and to accurately quantify their functional effects. A gene exemplifying the challenge of variant interpretation is the von Hippel-Lindautumor suppressor (VHL). VHL encodes an E3 ubiquitin ligase that regulates the cellular response to hypoxia. Germline pathogenic variants in VHL predispose patients to tumors including clear cell renal cell carcinoma (ccRCC) and pheochromocytoma, and somatic VHL mutations are frequently observed in sporadic renal cancer. Here we optimize and apply saturation genome editing to assay nearly all possible single-nucleotide variants (SNVs) across VHL's coding sequence. To delineate mechanisms, we quantify mRNA dosage effects and compare functional effects in isogenic cell lines. Function scores for 2,268 VHL SNVs identify a core set of pathogenic alleles driving ccRCC with perfect accuracy, inform differential risk across tumor types and reveal new mechanisms by which variants impact function. These results have immediate utility for classifying VHL variants encountered clinically and illustrate how precise functional measurements can resolve pleiotropic and dosage-dependent genotype-phenotype relationships across complete genes.


Assuntos
Alelos , Carcinoma de Células Renais , Edição de Genes , Neoplasias Renais , Polimorfismo de Nucleotídeo Único , Proteína Supressora de Tumor Von Hippel-Lindau , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Humanos , Edição de Genes/métodos , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Linhagem Celular Tumoral , Predisposição Genética para Doença , Mutação
11.
Hum Gene Ther ; 34(9-10): 388-403, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37119122

RESUMO

Muscular dystrophies (MDs) comprise a diverse group of inherited disorders characterized by progressive muscle loss and weakness. Given the genetic etiology underlying MDs, researchers have explored the potential of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing as a therapeutic intervention, resulting in significant advances. Here, we review recent progress on the use of CRISPR/Cas9 genome editing as a potential therapy for MDs. Significant strides have been made in this realm, made possible through innovative techniques such as precision genetic editing by modified forms of CRISPR/Cas9. These approaches have shown varying degrees of success in animal models of MD, including Duchenne MD, congenital muscular dystrophy type 1A, and myotonic dystrophy type 1. Even so, there are several challenges facing the development of CRISPR/Cas9-based MD therapies, including the targeting of satellite cells, improved editing efficiency in skeletal and cardiac muscle tissue, delivery vehicle enhancements, and the host immunogenic response. Although more work is needed to advance CRISPR/Cas9 genome editing past the preclinical stages, its therapeutic potential for MD is extremely promising and justifies concentrated efforts to move into clinical trials.


Assuntos
Edição de Genes , Distrofia Muscular de Duchenne , Animais , Edição de Genes/métodos , Sistemas CRISPR-Cas , Distrofia Muscular de Duchenne/genética , Terapia Genética/métodos , Distrofina/genética
12.
Front Immunol ; 14: 1183273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275873

RESUMO

Introduction: Humans with gain-of-function (GOF) mutations in STAT1 (Signal Transducer and Activator of Transcription 1), a potent immune regulator, experience frequent infections. About one-third, especially those with DNA-binding domain (DBD) mutations such as T385M, also develop autoimmunity, sometimes accompanied by increases in T-helper 1 (Th1) and T-follicular helper (Tfh) CD4 effector T cells, resembling those that differentiate following infection-induced STAT1 signaling. However, environmental and molecular mechanisms contributing to autoimmunity in STAT1 GOF patients are not defined. Methods: We generated Stat1T385M/+ mutant mice to model the immune impacts of STAT1 DBD GOF under specific-pathogen free (SPF) conditions. Results: Stat1T385M/+ lymphocytes had more total Stat1 at baseline and also higher amounts of IFNg-induced pStat1. Young mutants exhibited expansion of Tfh-like cells, while older mutants developed autoimmunity accompanied by increased Tfh-like cells, B cell activation and germinal center (GC) formation. Mutant females exhibited these immune changes sooner and more robustly than males, identifying significant sex effects of Stat1T385M-induced immune dysregulation. Single cell RNA-Seq (scRNA-Seq) analysis revealed that Stat1T385M activated transcription of GC-associated programs in both B and T cells. However, it had the strongest transcriptional impact on T cells, promoting aberrant CD4 T cell activation and imparting both Tfh-like and Th1-like effector programs. Discussion: Collectively, these data demonstrate that in the absence of overt infection, Stat1T385M disrupted naïve CD4 T cell homeostasis and promoted expansion and differentiation of abnormal Tfh/Th1-like helper and GC-like B cells, eventually leading to sex-biased autoimmunity, suggesting a model for STAT1 GOF-induced immune dysregulation and autoimmune sequelae in humans.


Assuntos
Autoimunidade , Linfócitos T CD4-Positivos , Masculino , Feminino , Humanos , Animais , Camundongos , Autoimunidade/genética , Mutação com Ganho de Função , Mutação , Linfócitos T Auxiliares-Indutores , Fator de Transcrição STAT1/genética
13.
Mol Ther Methods Clin Dev ; 30: 246-258, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37545481

RESUMO

Duchenne muscular dystrophy (DMD) is a disease with a life-threatening trajectory resulting from mutations in the dystrophin gene, leading to degeneration of skeletal muscle and fibrosis of cardiac muscle. The overwhelming majority of mutations are multiexonic deletions. We previously established a dystrophic mouse model with deletion of exons 52-54 in Dmd that develops an early-onset cardiac phenotype similar to DMD patients. Here we employed CRISPR-Cas9 delivered intravenously by adeno-associated virus (AAV) vectors to restore functional dystrophin expression via excision or skipping of exon 55. Exon skipping with a solitary guide significantly improved editing outcomes and dystrophin recovery over dual guide excision. Some improvements to genomic and transcript editing levels were observed when the guide dose was enhanced, but dystrophin restoration did not improve considerably. Editing and dystrophin recovery were restricted primarily to cardiac tissue. Remarkably, our exon skipping approach completely prevented onset of the cardiac phenotype in treated mice up to 12 weeks. Thus, our results demonstrate that intravenous delivery of a single-cut CRISPR-Cas9-mediated exon skipping therapy can prevent heart dysfunction in DMD in vivo.

14.
STAR Protoc ; 4(1): 101933, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36574341

RESUMO

Here, we describe a protocol for purifying functional clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) from Staphylococcus aureus within 24 h and over 90% purity. SaCas9 purification begins with immobilized metal affinity chromatography, followed by cation exchange chromatography, and ended with centrifugal concentrators. The simplicity, cost-effectiveness, and reproducibility of such protocols will enable general labs to produce a sizable amount of Cas9 proteins, further accelerating CRISPR research.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Staphylococcus aureus/genética , Análise Custo-Benefício , Reprodutibilidade dos Testes
15.
J Neurosci ; 31(27): 10009-18, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21734292

RESUMO

Ionotropic glutamate receptors of AMPA, NMDA, and kainate receptor (KAR) subtypes mediate fast excitatory synaptic transmission in the vertebrate CNS. Auxiliary proteins have been identified for AMPA and NMDA receptor complexes, but little is known about KAR complex proteins. We previously identified the CUB (complement C1r/C1s, Uegf, Bmpl) domain protein, Neto1, as an NMDA receptor-associated polypeptide. Here, we show that Neto1 is also an auxiliary subunit for endogenous synaptic KARs. We found that Neto1 and KARs coimmunoprecipitated from brain lysates, from postsynaptic densities (PSDs) and, in a manner dependent on Neto1 CUB domains, when coexpressed in heterologous cells. In Neto1-null mice, there was an ∼50% reduction in the abundance of GluK2-KARs in hippocampal PSDs. Neto1 strongly localized to CA3 stratum lucidum, and loss of Neto1 resulted in a selective deficit in KAR-mediated neurotransmission at mossy fiber-CA3 pyramidal cell (MF-CA3) synapses: KAR-mediated EPSCs in Neto1-null mice were reduced in amplitude and decayed more rapidly than did those in wild-type mice. In contrast, the loss of Neto2, which also localizes to stratum lucidum and interacts with KARs, had no effect on KAR synaptic abundance or MF-CA3 transmission. Indeed, MF-CA3 KAR deficits in Neto1/Neto2-double-null mutant mice were indistinguishable from Neto1 single-null mice. Thus, our findings establish Neto1 as an auxiliary protein required for synaptic function of KARs. The ability of Neto1 to regulate both NMDARs and KARs reveals a unique dual role in controlling synaptic transmission by serving as an auxiliary protein for these two classes of ionotropic glutamate receptors in a synapse-specific fashion.


Assuntos
Lipoproteínas LDL/metabolismo , Proteínas de Membrana/metabolismo , Densidade Pós-Sináptica/metabolismo , Receptores de Ácido Caínico/metabolismo , Sinaptossomos/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular , Linhagem Celular Transformada , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hipocampo/citologia , Humanos , Imunoprecipitação/métodos , Técnicas In Vitro , Proteínas Relacionadas a Receptor de LDL , Lipoproteínas LDL/deficiência , Glicoproteínas de Membrana , Proteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Receptores de N-Metil-D-Aspartato , Transfecção/métodos
16.
JCI Insight ; 7(23)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36301667

RESUMO

The folding and trafficking of transmembrane glycoproteins are essential for cellular homeostasis and are compromised in many diseases. In Niemann-Pick type C disease, a lysosomal disorder characterized by impaired intracellular cholesterol trafficking, the transmembrane glycoprotein NPC1 misfolds due to disease-causing missense mutations. While mutant NPC1 has emerged as a robust target for proteostasis modulators, drug development efforts have been unsuccessful in mouse models. Here, we demonstrated unexpected differences in trafficking through the medial Golgi between mouse and human I1061T-NPC1, a common disease-causing mutant. We established that these distinctions are governed by differences in the NPC1 protein sequence rather than by variations in the endoplasmic reticulum-folding environment. Moreover, we demonstrated direct effects of mutant protein trafficking on the response to small molecules that modulate the endoplasmic reticulum-folding environment by affecting Ca++ concentration. Finally, we developed a panel of isogenic human NPC1 iNeurons expressing WT, I1061T-, and R934L-NPC1 and demonstrated their utility in testing these candidate therapeutics. Our findings identify important rules governing mutant NPC1's response to proteostatic modulators and highlight the importance of species- and mutation-specific responses for therapy development.


Assuntos
Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C , Humanos , Animais , Camundongos , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Transporte Proteico
17.
Nat Biotechnol ; 40(6): 885-895, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35190686

RESUMO

High-throughput functional characterization of genetic variants in their endogenous locus has so far been possible only with methods that rely on homology-directed repair, which are limited by low editing efficiencies. Here, we adapted CRISPR prime editing for high-throughput variant classification and combined it with a strategy that allows for haploidization of any locus, which simplifies variant interpretation. We demonstrate the utility of saturation prime editing (SPE) by applying it to the NPC intracellular cholesterol transporter 1 gene (NPC1), mutations in which cause the lysosomal storage disorder Niemann-Pick disease type C. Our data suggest that NPC1 is very sensitive to genetic perturbation, with 410 of 706 assayed missense mutations being classified as deleterious, and that the derived function score of variants is reflective of diverse molecular defects. We further applied our approach to the BRCA2 gene, demonstrating that SPE is translatable to other genes with an appropriate cellular assay. In sum, we show that SPE allows for efficient, accurate functional characterization of genetic variants.


Assuntos
Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação/genética , Proteína C1 de Niemann-Pick/genética , Doença de Niemann-Pick Tipo C/genética
18.
NPJ Genom Med ; 6(1): 34, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990617

RESUMO

Signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) is an autosomal dominant immune disorder marked by wide infectious predisposition, autoimmunity, vascular disease, and malignancy. Its molecular hallmark, elevated phospho-STAT1 (pSTAT1) following interferon (IFN) stimulation, is seen consistently in all patients and may not fully account for the broad phenotypic spectrum associated with this disorder. While over 100 mutations have been implicated in STAT1 GOF, genotype-phenotype correlation remains limited, and current overexpression models may be of limited use in gene expression studies. We generated heterozygous mutants in diploid HAP1 cells using CRISPR/Cas9 base-editing, targeting the endogenous STAT1 gene. Our models recapitulated the molecular phenotype of elevated pSTAT1, and were used to characterize the expression of five IFN-stimulated genes under a number of conditions. At baseline, transcriptional polarization was evident among mutants compared with wild type, and this was maintained following prolonged serum starvation. This suggests a possible role for unphosphorylated STAT1 in the pathogenesis of STAT1 GOF. Following stimulation with IFNα or IFNγ, differential patterns of gene expression emerged among mutants, including both gain and loss of transcriptional function. This work highlights the importance of modeling heterozygous conditions, and in particular transcription factor-related disorders, in a manner which accurately reflects patient genotype and molecular signature. Furthermore, we propose a complex and multifactorial transcriptional profile associated with various STAT1 mutations, adding to global efforts in establishing STAT1 GOF genotype-phenotype correlation and enhancing our understanding of disease pathogenesis.

19.
ACS Appl Mater Interfaces ; 13(49): 58352-58368, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34873903

RESUMO

Developing safe and effective strategies to deliver biomolecules such as oligonucleotides and proteins into cells has grown in importance over recent years, with an increasing demand for non-viral methods that enable clinical translation. Here, we investigate uniquely configured oligo-urethane nanoparticles based on synthetic chemistries that minimize the release of pro-inflammatory biomarkers from immune cells, show low cytotoxicity in a broad range of cells, and efficiently deliver oligonucleotides and proteins into mammalian cells. The mechanism of cell uptake for the self-assembled oligo-urethane nanoparticles was shown to be directed by caveolae-dependent endocytosis in murine myoblasts (C2C12) cells. Inhibiting caveolae functions with genistein and methyl-ß-cyclodextrin limited nanoparticle internalization. The nanoparticles showed a very high delivery efficiency for the genetic material (a 47-base oligonucleotide) (∼80% incorporation into cells) as well as the purified protein (full length firefly luciferase, 67 kDa) into human embryonic kidney (HEK293T) cells. Luciferase enzyme activity in HEK293T cells demonstrated that intact and functional proteins could be delivered and showed a significant extension of activity retention up to 24 h, well beyond the 2 h half-life of the free enzyme. This study introduces a novel self-assembled oligo-urethane nanoparticle delivery platform with very low associated production costs, enabled by their scalable chemistry (the benchwork cost is $ 0.152/mg vs $ 974.6/mg for typical lipid carriers) that has potential to deliver both oligonucleotides and proteins for biomedical purposes.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Oligonucleotídeos/química , Animais , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células HEK293 , Humanos , Luciferases/metabolismo , Teste de Materiais , Camundongos , Estrutura Molecular , Oligonucleotídeos/genética , Oligonucleotídeos/farmacologia
20.
EMBO Mol Med ; 13(5): e13228, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33724658

RESUMO

Tandem duplication mutations are increasingly found to be the direct cause of many rare heritable diseases, accounting for up to 10% of cases. Unfortunately, animal models recapitulating such mutations are scarce, limiting our ability to study them and develop genome editing therapies. Here, we describe the generation of a novel duplication mouse model, harboring a multi-exonic tandem duplication in the Dmd gene which recapitulates a human mutation. Duplication correction of this mouse was achieved by implementing a single-guide RNA (sgRNA) CRISPR/Cas9 approach. This strategy precisely removed a duplication mutation in vivo, restored full-length dystrophin expression, and was accompanied by improvements in both histopathological and clinical phenotypes. We conclude that CRISPR/Cas9 represents a powerful tool to accurately model and treat tandem duplication mutations. Our findings will open new avenues of research for exploring the study and therapeutics of duplication disorders.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Sistemas CRISPR-Cas , Distrofina/genética , Edição de Genes , Camundongos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , RNA Guia de Cinetoplastídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA