Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genet Vaccines Ther ; 4: 3, 2006 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-16719929

RESUMO

BACKGROUND: Duchenne muscular dystrophy is a fatal genetic disorder caused by dystrophin gene mutations that result in premature termination of translation and the absence of functional protein. Despite the primary dystrophin gene lesion, immunostaining studies have shown that at least 50% of DMD patients, mdx mice and a canine model of DMD have rare dystrophin-positive or 'revertant' fibres. Fine epitope mapping has shown that the majority of transcripts responsible for revertant fibres exclude multiple exons, one of which includes the dystrophin mutation. METHODS: The mdx mouse model of muscular dystrophy has a nonsense mutation in exon 23 of the dystrophin gene. We have shown that antisense oligonucleotides (AOs) can induce the removal of this exon, resulting in an in-frame mRNA transcript encoding a shortened but functional dystrophin protein. To emulate one exonic combination associated with revertant fibres, we target multiple exons for removal by the application of a group of AOs combined as a "cocktail". RESULTS: Exons 19-25 were consistently excluded from the dystrophin gene transcript using a cocktail of AOs. This corresponds to an alternatively processed gene transcript that has been sporadically detected in untreated dystrophic mouse muscle, and is presumed to give rise to a revertant dystrophin isoform. The transcript and the resultant correctly localised smaller protein were confirmed by RT-PCR, immunohistochemistry and western blot analysis. CONCLUSION: This work demonstrates the feasibility of AO cocktails to by-pass dystrophin mutation hotspots through multi-exon skipping. Multi-exon skipping could be important in expediting an exon skipping therapy to treat DMD, so that the same AO formulations may be applied to several different mutations within particular domains of the dystrophin gene.

2.
Antimicrob Agents Chemother ; 49(1): 249-55, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15616302

RESUMO

Phosphorodiamidate morpholino oligomers (PMOs) are synthetic DNA analogs that inhibit gene expression in a sequence-dependent manner. PMOs of various lengths (7 to 20 bases) were tested for inhibition of luciferase expression in Escherichia coli. Shorter PMOs generally inhibited luciferase greater than longer PMOs. Conversely, in bacterial cell-free protein synthesis reactions, longer PMOs inhibited equally or more than shorter PMOs. Overlapping, isometric (10-base) PMOs complementary to the region around the start codon of luciferase inhibited to different extents in bacterial cell-free protein expression reactions. Including the anti-start codon in PMOs was not required for maximal inhibition. PMOs targeted to 5' nontranslated or 3' coding regions within luciferase mRNA did not inhibit, except for one PMO targeted to the ribosome-binding site. Inhibition of luciferase expression correlated negatively with the predicted secondary structure of mRNA regions targeted by PMO but did not correlate with C+G content of targeted regions. The effects of PMO length and position were corroborated by using PMOs (6 to 20 bases) targeted to acpP, a gene required for viability. Because inhibition by PMOs of approximately 11 bases was unexpected based on previous results in eukaryotes, we tested an 11-base PMO in HeLa cells and reticulocyte cell-free protein synthesis reactions. The 11-base PMO significantly inhibited luciferase expression in HeLa cells, although less than did a 20-base PMO. In reticulocyte cell-free reactions, there was a trend toward more inhibition with longer PMOs. These studies indicate that strategies for designing PMOs are substantially different for prokaryotic than eukaryotic targets.


Assuntos
Escherichia coli/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Morfolinas/química , Morfolinas/farmacologia , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Códon de Iniciação , Escherichia coli/genética , Escherichia coli/metabolismo , Células HeLa , Humanos , Luciferases/antagonistas & inibidores , Luciferases/metabolismo , Dados de Sequência Molecular , Morfolinas/síntese química , Morfolinos , Oligonucleotídeos Antissenso/síntese química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA