Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(23): 11408-11417, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31097586

RESUMO

Thioredoxin reductase-1 (TrxR1)-, glutathione reductase (Gsr)-, and Nrf2 transcription factor-driven antioxidant systems form an integrated network that combats potentially carcinogenic oxidative damage yet also protects cancer cells from oxidative death. Here we show that although unchallenged wild-type (WT), TrxR1-null, or Gsr-null mouse livers exhibited similarly low DNA damage indices, these were 100-fold higher in unchallenged TrxR1/Gsr-double-null livers. Notwithstanding, spontaneous cancer rates remained surprisingly low in TrxR1/Gsr-null livers. All genotypes, including TrxR1/Gsr-null, were susceptible to N-diethylnitrosamine (DEN)-induced liver cancer, indicating that loss of these antioxidant systems did not prevent cancer cell survival. Interestingly, however, following DEN treatment, TrxR1-null livers developed threefold fewer tumors compared with WT livers. Disruption of TrxR1 in a marked subset of DEN-initiated cancer cells had no effect on their subsequent contributions to tumors, suggesting that TrxR1-disruption does not affect cancer progression under normal care, but does decrease the frequency of DEN-induced cancer initiation. Consistent with this idea, TrxR1-null livers showed altered basal and DEN-exposed metabolomic profiles compared with WT livers. To examine how oxidative stress influenced cancer progression, we compared DEN-induced cancer malignancy under chronically low oxidative stress (TrxR1-null, standard care) vs. elevated oxidative stress (TrxR1/Gsr-null livers, standard care or phenobarbital-exposed TrxR1-null livers). In both cases, elevated oxidative stress was correlated with significantly increased malignancy. Finally, although TrxR1-null and TrxR1/Gsr-null livers showed strong Nrf2 activity in noncancerous hepatocytes, there was no correlation between malignancy and Nrf2 expression within tumors across genotypes. We conclude that TrxR1, Gsr, Nrf2, and oxidative stress are major determinants of liver cancer but in a complex, context-dependent manner.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Glutationa Redutase/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Estresse Oxidativo/fisiologia , Tiorredoxina Redutase 1/metabolismo , Animais , Antioxidantes/metabolismo , Dano ao DNA/fisiologia , Progressão da Doença , Regulação da Expressão Gênica/fisiologia , Glutationa/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Metaboloma/fisiologia , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução
2.
Hepatology ; 54(2): 655-63, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21538442

RESUMO

UNLABELLED: The contributions that de novo differentiation of new hepatocyte lineages makes to normal liver physiology are unknown. In this study, a system that uniquely marks cells during a finite period following primary activation of a serum albumin gene promoter/enhancer-driven Cre recombinase (albCre) transgene was used to investigate birthrates of new hepatocyte lineages from albumin (Alb)-naive precursors in mice. Elapsed time was measured with a two-color fluorescent marker gene that converts from expressing tandem dimer Tomato (tdT; a red fluorescent protein) to expressing green fluorescent protein (GFP) following primary exposure to Cre. The accumulation of GFP and the decay of tdT each contributed to a regular fluorescence transition, which was calibrated in vivo. In normal adults, this system revealed that a steady-state level of 0.076% of all hepatocytes had differentiated within the previous 4 days from albCre-naive cell lineages. In comparison with resting adult livers, the relative abundance of these newborn hepatocytes was elevated 3.7-fold in the growing livers of juveniles and 8.6-fold during liver regeneration after partial hepatectomy in adults. CONCLUSION: Newborn hepatocyte lineages arising from Alb-naive cells contribute to liver maintenance under normal conditions. Hepatocyte lineage birthrates can vary in response to the liver's physiological status.


Assuntos
Hepatócitos , Regeneração Hepática , Fígado/crescimento & desenvolvimento , Animais , Linhagem Celular , Camundongos
3.
Biochim Biophys Acta ; 1789(6-8): 487-92, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19540372

RESUMO

U2 small nuclear ribonucleoprotein auxiliary factor (U2AF) is an essential component of the splicing machinery that is composed of two protein subunits, the 35 kDa U2AF(35) (U2AF1) and the 65 kDa U2AF(65) (U2AF2). U2AF interacts with various splicing factors within this machinery. Here we expand the list of mammalian splicing factors that are known to interact with U2AF(65) as well as the list of nuclear proteins not known to participate in splicing that interact with U2AF(65). Using a yeast two-hybrid system, we found fourteen U2AF(65)-interacting proteins. The validity of the screen was confirmed by identification of five known U2AF(65)-interacting proteins, including its heterodimeric partner, U2AF(35). In addition to binding these known partners, we found previously unrecognized U2AF(65) interactions with four splicing-related proteins (DDX39, SFRS3, SFRS18, SNRPA), two zinc finger proteins (ZFP809 and ZC3H11A), a U2AF(65) homolog (RBM39), and two other regulatory proteins (DAXX and SERBP1). We report which regions of U2AF(65) each of these proteins interacts with and we discuss their potential roles in regulation of pre-mRNA splicing, 3'-end mRNA processing, and U2AF(65) sub-nuclear localization. These findings suggest expanded roles for U2AF(65) in both splicing and non-splicing functions.


Assuntos
Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Splicing de RNA , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Animais , Sequência de Bases , DNA Complementar/genética , Feminino , Técnicas In Vitro , Camundongos , Proteínas Nucleares/genética , Gravidez , Ligação Proteica , Mapeamento de Interação de Proteínas , Precursores de RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/genética , Fator de Processamento U2AF , Técnicas do Sistema de Duplo-Híbrido
4.
Free Radic Biol Med ; 43(6): 911-23, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17697936

RESUMO

Thioredoxin reductases (Txnrd) maintain intracellular redox homeostasis in most organisms. Metazoan Txnrds also participate in signal transduction. Mouse embryos homozygous for a targeted null mutation of the txnrd1 gene, encoding the cytosolic thioredoxin reductase, were viable at embryonic day 8.5 (E8.5) but not at E9.5. Histology revealed that txnrd1-/- cells were capable of proliferation and differentiation; however, mutant embryos were smaller than wild-type littermates and failed to gastrulate. In situ marker gene analyses indicated that primitive streak mesoderm did not form. Microarray analyses on E7.5 txnrd-/- and txnrd+/+ littermates showed similar mRNA levels for peroxiredoxins, glutathione reductases, mitochondrial Txnrd2, and most markers of cell proliferation. Conversely, mRNAs encoding sulfiredoxin, IGF-binding protein 1, carbonyl reductase 3, glutamate cysteine ligase, glutathione S-transferases, and metallothioneins were more abundant in mutants. Many gene expression responses mirrored those in thioredoxin reductase 1-null yeast; however, mice exhibited a novel response within the peroxiredoxin catalytic cycle. Thus, whereas yeast induce peroxiredoxin mRNAs in response to thioredoxin reductase disruption, mice induced sulfiredoxin mRNA. In summary, Txnrd1 was required for correct patterning of the early embryo and progression to later development. Conserved responses to Txnrd1 disruption likely allowed proliferation and limited differentiation of the mutant embryo cells.


Assuntos
Embrião de Mamíferos/enzimologia , Desenvolvimento Embrionário , RNA Mensageiro/metabolismo , Tiorredoxina Dissulfeto Redutase/fisiologia , Oxirredutases do Álcool/genética , Animais , Padronização Corporal/genética , Diferenciação Celular/genética , Sobrevivência Celular/genética , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Deleção de Genes , Perfilação da Expressão Gênica , Glutationa Transferase/genética , Masculino , Metalotioneína/genética , Camundongos , Camundongos Mutantes , Peroxidases/genética , Peroxirredoxinas , Tiorredoxina Redutase 1 , Tiorredoxina Dissulfeto Redutase/genética , Transcrição Gênica/genética
5.
ACS Synth Biol ; 5(1): 99-103, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26479688

RESUMO

Multipart and modular DNA part libraries and assembly standards have become common tools in synthetic biology since the publication of the Gibson and Golden Gate assembly methods, yet no multipart modular library exists for use in bacterial systems. Building upon the existing MoClo assembly framework, we have developed a publicly available collection of modular DNA parts and enhanced MoClo protocols to enable rapid one-pot, multipart assembly, combinatorial design, and expression tuning in Escherichia coli. The Cross-disciplinary Integration of Design Automation Research lab (CIDAR) MoClo Library is openly available and contains promoters, ribosomal binding sites, coding sequence, terminators, vectors, and a set of fluorescent control plasmids. Optimized protocols reduce reaction time and cost by >80% from that of previously published protocols.


Assuntos
Clonagem Molecular/métodos , Técnicas de Química Combinatória/métodos , Escherichia coli/genética , Biblioteca Gênica , Biologia Sintética/métodos , Fluoresceína/metabolismo
6.
Free Radic Biol Med ; 63: 369-80, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23743293

RESUMO

Besides helping to maintain a reducing intracellular environment, the thioredoxin (Trx) system impacts bioenergetics and drug metabolism. We show that hepatocyte-specific disruption of Txnrd1, encoding Trx reductase-1 (TrxR1), causes a metabolic switch in which lipogenic genes are repressed and periportal hepatocytes become engorged with glycogen. These livers also overexpress machinery for biosynthesis of glutathione and conversion of glycogen into UDP-glucuronate; they stockpile glutathione-S-transferases and UDP-glucuronyl-transferases; and they overexpress xenobiotic exporters. This realigned metabolic profile suggested that the mutant hepatocytes might be preconditioned to more effectively detoxify certain xenobiotic challenges. Hepatocytes convert the pro-toxin acetaminophen (APAP, paracetamol) into cytotoxic N-acetyl-p-benzoquinone imine (NAPQI). APAP defenses include glucuronidation of APAP or glutathionylation of NAPQI, allowing removal by xenobiotic exporters. We found that NAPQI directly inactivates TrxR1, yet Txnrd1-null livers were resistant to APAP-induced hepatotoxicity. Txnrd1-null livers did not have more effective gene expression responses to APAP challenge; however, their constitutive metabolic state supported more robust GSH biosynthesis, glutathionylation, and glucuronidation systems. Following APAP challenge, this effectively sustained the GSH system and attenuated damage.


Assuntos
Glutationa/metabolismo , Inativação Metabólica/genética , Tiorredoxina Redutase 1/metabolismo , Tiorredoxinas/metabolismo , Acetaminofen/administração & dosagem , Animais , Benzoquinonas/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glicogênio/genética , Glicogênio/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Iminas/administração & dosagem , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Tiorredoxina Redutase 1/genética , Tiorredoxinas/genética
7.
Free Radic Biol Med ; 52(4): 803-10, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22198266

RESUMO

Ribonucleotide reductase (RNR) activity requires an electron donor, which in bacteria, yeast, and plants is usually either reduced thioredoxin (Trx) or reduced glutaredoxin. Mice lacking glutathione reductase are viable and, although mice lacking thioredoxin reductase 1 (TrxR1) are embryonic-lethal, several studies have shown that mouse cells lacking the txnrd1 gene, encoding TrxR1, can proliferate normally. To better understand the in vivo electron donor requirements for mammalian RNR, we here investigated whether replication of TrxR1-deficient hepatocytes in mouse livers either employed an alternative source of Trx-reducing activity or, instead, solely relied upon the glutathione (GSH) pathway. Neither normal nor genetically TrxR1-deficient livers expressed substantial levels of mRNA splice forms encoding cytosolic variants of TrxR2, and the TrxR1-deficient livers showed severely diminished total TrxR activity, making it unlikely that any alternative TrxR enzyme activities complemented the genetic TrxR1 deficiency. To test whether the GSH pathway was required for replication, GSH levels were depleted by administration of buthionine sulfoximine (BSO) to juvenile mice. In controls not receiving BSO, replicative indexes were similar in hepatocytes having two, one, or no functional alleles of txnrd1. After BSO treatment, hepatocytes containing either two or one copies of this gene were also normal. However, hepatocytes completely lacking a functional txnrd1 gene exhibited severely reduced replicative indexes after GSH depletion. We conclude that hepatocyte proliferation in vivo requires either GSH or at least one functional allele of txnrd1, demonstrating that either the GSH- or the TrxR1-dependent redox pathway can independently support hepatocyte proliferation during liver growth.


Assuntos
Proliferação de Células , Replicação do DNA , Glutationa/fisiologia , Hepatócitos/fisiologia , Fígado/citologia , Tiorredoxina Redutase 1/genética , Animais , Sequência de Bases , Éxons , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Heterozigoto , Histonas/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Fígado/enzimologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Antígeno Nuclear de Célula em Proliferação/metabolismo , Tiorredoxina Redutase 1/deficiência , Tiorredoxina Redutase 1/metabolismo , Tiorredoxina Redutase 2/genética , Tiorredoxina Redutase 2/metabolismo , Tiorredoxinas/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA