RESUMO
Haematopoietic stem cells (HSCs) are a rare cell type that reconstitute the entire blood and immune systems after transplantation and can be used as a curative cell therapy for a variety of haematological diseases1,2. However, the low number of HSCs in the body makes both biological analyses and clinical application difficult, and the limited extent to which human HSCs can be expanded ex vivo remains a substantial barrier to the wider and safer therapeutic use of HSC transplantation3. Although various reagents have been tested in attempts to stimulate the expansion of human HSCs, cytokines have long been thought to be essential for supporting HSCs ex vivo4. Here we report the establishment of a culture system that allows the long-term ex vivo expansion of human HSCs, achieved through the complete replacement of exogenous cytokines and albumin with chemical agonists and a caprolactam-based polymer. A phosphoinositide 3-kinase activator, in combination with a thrombopoietin-receptor agonist and the pyrimidoindole derivative UM171, were sufficient to stimulate the expansion of umbilical cord blood HSCs that are capable of serial engraftment in xenotransplantation assays. Ex vivo HSC expansion was further supported by split-clone transplantation assays and single-cell RNA-sequencing analysis. Our chemically defined expansion culture system will help to advance clinical HSC therapies.
Assuntos
Técnicas de Cultura de Células , Proliferação de Células , Citocinas , Células-Tronco Hematopoéticas , Humanos , Proliferação de Células/efeitos dos fármacos , Células Clonais/citologia , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Sangue Fetal/citologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Técnicas de Cultura de Células/métodos , Albuminas , Caprolactama , Polímeros , Receptores de Trombopoetina , Transplante Heterólogo , Análise da Expressão Gênica de Célula ÚnicaRESUMO
Obesity is a worldwide epidemic that predisposes individuals to many age-associated diseases, but its exact effects on organ dysfunction are largely unknown1. Hair follicles-mini-epithelial organs that grow hair-are miniaturized by ageing to cause hair loss through the depletion of hair follicle stem cells (HFSCs)2. Here we report that obesity-induced stress, such as that induced by a high-fat diet (HFD), targets HFSCs to accelerate hair thinning. Chronological gene expression analysis revealed that HFD feeding for four consecutive days in young mice directed activated HFSCs towards epidermal keratinization by generating excess reactive oxygen species, but did not reduce the pool of HFSCs. Integrative analysis using stem cell fate tracing, epigenetics and reverse genetics showed that further feeding with an HFD subsequently induced lipid droplets and NF-κB activation within HFSCs via autocrine and/or paracrine IL-1R signalling. These integrated factors converge on the marked inhibition of Sonic hedgehog (SHH) signal transduction in HFSCs, thereby further depleting lipid-laden HFSCs through their aberrant differentiation and inducing hair follicle miniaturization and eventual hair loss. Conversely, transgenic or pharmacological activation of SHH rescued HFD-induced hair loss. These data collectively demonstrate that stem cell inflammatory signals induced by obesity robustly represses organ regeneration signals to accelerate the miniaturization of mini-organs, and suggests the importance of daily prevention of organ dysfunction.
Assuntos
Alopecia/patologia , Alopecia/fisiopatologia , Folículo Piloso/patologia , Obesidade/fisiopatologia , Células-Tronco/patologia , Animais , Comunicação Autócrina , Contagem de Células , Diferenciação Celular , Linhagem da Célula , Senescência Celular , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Proteínas Hedgehog/metabolismo , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/patologia , Estresse Oxidativo , Comunicação Parácrina , Receptores de Interleucina-1/metabolismoRESUMO
Hematopoietic stem cells (HSCs) reside and self-renew in the bone marrow (BM) niche. Overall, the signaling that regulates stem cell dormancy in the HSC niche remains controversial. Here, we demonstrate that TGF-ß type II receptor-deficient HSCs show low-level Smad activation and impaired long-term repopulating activity, underlining the critical role of TGF-ß/Smad signaling in HSC maintenance. TGF-ß is produced as a latent form by a variety of cells, so we searched for those that express activator molecules for latent TGF-ß. Nonmyelinating Schwann cells in BM proved responsible for activation. These glial cells ensheathed autonomic nerves, expressed HSC niche factor genes, and were in contact with a substantial proportion of HSCs. Autonomic nerve denervation reduced the number of these active TGF-ß-producing cells and led to rapid loss of HSCs from BM. We propose that glial cells are components of a BM niche and maintain HSC hibernation by regulating activation of latent TGF-ß.
Assuntos
Medula Óssea/fisiologia , Células-Tronco Hematopoéticas/citologia , Células de Schwann/citologia , Fator de Crescimento Transformador beta3/metabolismo , Animais , Antígenos CD34/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Células de Schwann/fisiologia , SimpatectomiaRESUMO
Bone marrow is a dynamic organ composed of stem cells that constantly receive signals from stromal cells and other hematopoietic cells in the niches of the bone marrow to maintain hematopoiesis and generate immune cells. Perturbation of the bone marrow microenvironment by infection and inflammation affects hematopoiesis and may affect immune cell development. Little is known about the effect of malaria on the bone marrow stromal cells that govern the hematopoietic stem cell (HSC) niche. In this study, we demonstrate that the mesenchymal stromal CXCL12-abundant reticular (CAR) cell population is reduced during acute malaria infection. The reduction of CXCL12 and interleukin-7 signals in the bone marrow impairs the lymphopoietic niche, leading to the depletion of common lymphoid progenitors, B cell progenitors, and mature B cells, including plasma cells in the bone marrow. We found that interferon-γ (IFNγ) is responsible for the upregulation of Sca1 on CAR cells, yet the decline in CAR cell and B cell populations in the bone marrow is IFNγ-independent. In contrast to the decline in B cell populations, HSCs and multipotent progenitors increased with the expansion of myelopoiesis and erythropoiesis, indicating a bias in the differentiation of multipotent progenitors during malaria infection. These findings suggest that malaria may affect host immunity by modulating the bone marrow niche.
Assuntos
Linfócitos B , Medula Óssea , Quimiocina CXCL12 , Malária , Camundongos Endogâmicos C57BL , Animais , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/imunologia , Camundongos , Malária/imunologia , Malária/parasitologia , Linfócitos B/imunologia , Medula Óssea/imunologia , Medula Óssea/parasitologia , Nicho de Células-Tronco/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismoRESUMO
PURPOSE OF REVIEW: The development of new antiaging medicines is of great interest to the current elderly and aging population. Aging of the hematopoietic system is attributed to the aging of hematopoietic stem cells (HSCs), and epigenetic alterations are the key effectors driving HSC aging. Understanding the epigenetics of HSC aging holds promise of providing new insights for combating HSC aging and age-related hematological malignancies. RECENT FINDINGS: Aging is characterized by the progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. During aging, the HSCs undergo both quantitative and qualitative changes. These functional changes in HSCs cause dysregulated hematopoiesis, resulting in anemia, immune dysfunction, and an increased risk of hematological malignancies. Various cell-intrinsic and cell-extrinsic effectors influencing HSC aging have also been identified. Epigenetic alterations are one such mechanism. SUMMARY: Cumulative epigenetic alterations in aged HSCs affect their fate, leading to aberrant self-renewal, differentiation, and function of aged HSCs. In turn, these factors provide an opportunity for aged HSCs to expand by modulating their self-renewal and differentiation balance, thereby contributing to the development of hematological malignancies.
Assuntos
Senescência Celular , Epigênese Genética , Células-Tronco Hematopoéticas , Humanos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Células-Tronco Hematopoéticas/citologia , Animais , Envelhecimento/metabolismo , Envelhecimento/genética , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Hematopoese , Diferenciação CelularRESUMO
Cancer cell heterogeneity is a major driver of therapy resistance. To characterize resistant cells and their vulnerabilities, we studied the PLZF-RARA variant of acute promyelocytic leukemia, resistant to retinoic acid (RA), using single-cell multiomics. We uncovered transcriptional and chromatin heterogeneity in leukemia cells. We identified a subset of cells resistant to RA with proliferation, DNA replication, and repair signatures that depend on a fine-tuned E2F transcriptional network targeting the epigenetic regulator enhancer of zeste homolog 2 (EZH2). Epigenomic and functional analyses validated the driver role of EZH2 in RA resistance. Targeting pan-EZH2 activities (canonical/noncanonical) was necessary to eliminate leukemia relapse-initiating cells, which underlies a dependency of resistant cells on an EZH2 noncanonical activity and the necessity to degrade EZH2 to overcome resistance. Our study provides critical insights into the mechanisms of RA resistance that allow us to eliminate treatment-resistant leukemia cells by targeting EZH2, thus highlighting a potential targeted therapy approach. Beyond RA resistance and acute promyelocytic leukemia context, our study also demonstrates the power of single-cell multiomics to identify, characterize, and clear therapy-resistant cells.
Assuntos
Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Tretinoína/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Receptor alfa de Ácido Retinoico/genética , Receptores do Ácido Retinoico/genética , Fatores de Transcrição/genética , Proteínas Nucleares/genéticaRESUMO
Dysfunctional anti-tumor immunity has been implicated in the pathogenesis of mature B cell neoplasms, such as multiple myeloma and B cell lymphoma; however, the impact of exhausted T cells on disease development remains unclear. Therefore, the present study investigated the features and pathogenetic significance of exhausted T cells using a mouse model of de novo mature B cell neoplasms, which is likely to show immune escape similar to human patients. The results revealed a significant increase in PD-1+ Tim-3- and PD-1+ Tim-3+ T cells in sick mice. Furthermore, PD-1+ Tim-3+ T cells exhibited direct cytotoxicity with a short lifespan, showing transcriptional similarities to terminally exhausted T cells. On the other hand, PD-1+ Tim-3- T cells not only exhibited immunological responsiveness but also retained stem-like transcriptional features, suggesting that they play a role in the long-term maintenance of anti-tumor immunity. In PD-1+ Tim-3- and PD-1+ Tim-3+ T cells, the transcription factors Tox and Nr4a2, which reportedly contribute to the progression of T cell exhaustion, were up-regulated in vivo. These transcription factors were down-regulated by IMiDs in our in vitro T cell exhaustion analyses. The prevention of excessive T cell exhaustion may maintain effective anti-tumor immunity to cure mature B cell neoplasms.
Assuntos
Linfoma de Células B , Mieloma Múltiplo , Animais , Humanos , Receptor Celular 2 do Vírus da Hepatite A , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Modelos Animais de Doenças , Fatores de TranscriçãoRESUMO
Epigenetic regulation is essential for the maintenance of the hematopoietic system, and its deregulation is implicated in hematopoietic disorders. In this study, UTX, a demethylase for lysine 27 on histone H3 (H3K27) and a component of COMPASS-like and SWI/SNF complexes, played an essential role in the hematopoietic system by globally regulating aging-associated genes. Utx-deficient (UtxΔ/Δ) mice exhibited myeloid skewing with dysplasia, extramedullary hematopoiesis, impaired hematopoietic reconstituting ability, and increased susceptibility to leukemia, which are the hallmarks of hematopoietic aging. RNA-sequencing (RNA-seq) analysis revealed that Utx deficiency converted the gene expression profiles of young hematopoietic stem-progenitor cells (HSPCs) to those of aged HSPCs. Utx expression in hematopoietic stem cells declined with age, and UtxΔ/Δ HSPCs exhibited increased expression of an aging-associated marker, accumulation of reactive oxygen species, and impaired repair of DNA double-strand breaks. Pathway and chromatin immunoprecipitation analyses coupled with RNA-seq data indicated that UTX contributed to hematopoietic homeostasis mainly by maintaining the expression of genes downregulated with aging via demethylase-dependent and -independent epigenetic programming. Of note, comparison of pathway changes in UtxΔ/Δ HSPCs, aged muscle stem cells, aged fibroblasts, and aged induced neurons showed substantial overlap, strongly suggesting common aging mechanisms among different tissue stem cells.
Assuntos
Envelhecimento/genética , Regulação da Expressão Gênica/genética , Hematopoese/genética , Sistema Hematopoético/fisiologia , Código das Histonas/genética , Histona Desmetilases/fisiologia , Animais , Senescência Celular/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Feminino , Predisposição Genética para Doença , Hematopoese Extramedular , Histona Desmetilases/deficiência , Histona Desmetilases/genética , Reconstituição Imune , Histona Desmetilases com o Domínio Jumonji/metabolismo , Leucemia Experimental/genética , Leucemia Experimental/virologia , Masculino , Camundongos , Camundongos Knockout , Vírus da Leucemia Murina de Moloney/fisiologia , Células Mieloides/patologia , Quimera por Radiação , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/metabolismo , Integração ViralRESUMO
POEMS syndrome is a rare monoclonal plasma cell disorder with unique symptoms distinct from other plasma cell neoplasms. To identify and find the transcriptional features of clonal plasma cells in POEMS syndrome (POEMS clones), single-cell RNA sequencing was performed on patient-derived bone marrow plasma cells. POEMS clones were identified in 5 out of 10 patients, and the proportions of POEMS clones in the plasma cells were markedly smaller than that of other plasma cell malignancies such as multiple myeloma and MGUS. The transcriptional features of POEMS clones differed from those of other plasma cell diseases, and representative MM-related oncogenes were not upregulated in POEMS clones. Notably, POEMS clones are negative for CD19 and express significantly lower MHC-II levels than normal plasma cells; thus, CD19- HLA-DRlo is confirmed as a useful marker to identify POEMS clones in patients. These findings unveil the unique features of POEMS clones and contribute to the understanding of the pathogenesis of POEMS syndrome.
Assuntos
Mieloma Múltiplo , Síndrome POEMS , Paraproteinemias , Humanos , Plasmócitos/patologia , Síndrome POEMS/genética , Síndrome POEMS/diagnóstico , Mieloma Múltiplo/patologia , Células Clonais/patologia , Análise de Sequência de RNARESUMO
Radiation therapy is one of the major treatment modalities for patients with cancers. However, ionizing radiation (IR) damages not only cancer cells but also the surrounding vascular endothelial cells (ECs). Hippo pathway effector genes Yap1 and Taz are the two transcriptional coactivators that have crucial roles in tissue homeostasis and vascular integrity in various organs. However, their function in adult ECs at the steady state and after IR is poorly understood. Here, we report sex- and context-dependent roles of endothelial YAP1/TAZ in maintaining vascular integrity and organismal survival. EC-specific Yap1/Taz deletion compromised systemic vascular integrity, resulting in lethal circulation failure preferentially in male mice. Furthermore, EC-specific Yap1/Taz deletion induced acute lethality upon sublethal IR that was closely associated with exacerbated systemic vascular dysfunction and circulation failure. Consistent with these findings, RNA-seq analysis revealed downregulation of tight junction genes in Yap1/Taz-deleted ECs. Collectively, our findings highlight the importance of endothelial YAP1/TAZ for maintaining adult vascular function, which may provide clinical implications for preventing organ injury after radiation therapy.
Assuntos
Neoplasias , Transativadores , Animais , Células Endoteliais/metabolismo , Masculino , Camundongos , Neoplasias/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAPRESUMO
Because spermatogonial stem cells (SSCs) are immortal by serial transplantation, SSC aging in intact testes is considered to be caused by a deteriorated microenvironment. Here, we report a cell-intrinsic mode of SSC aging by glycolysis activation. Using cultured SSCs, we found that aged SSCs proliferated more actively than young SSCs and showed enhanced glycolytic activity. Moreover, they remained euploid and exhibited stable androgenetic imprinting patterns with robust SSC activity despite having shortened telomeres. Aged SSCs showed increased Wnt7b expression, which was associated with decreased Polycomb complex 2 activity. Our results suggest that aberrant Wnt7b expression activated c-jun N-terminal kinase (JNK), which down-regulated mitochondria numbers by suppressing Ppargc1a Down-regulation of Ppargc1a probably decreased reactive oxygen species and enhanced glycolysis. Analyses of the Klotho-deficient aging mouse model and 2-y-old aged rats confirmed JNK hyperactivation and increased glycolysis. Therefore, not only microenvironment but also intrinsic activation of JNK-mediated glycolysis contributes to SSC aging.
Assuntos
Envelhecimento/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteínas Proto-Oncogênicas/genética , Espermatogênese/genética , Proteínas Wnt/genética , Células-Tronco Germinativas Adultas/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento , Glucuronidase/genética , Glicólise/genética , Proteínas Klotho , Masculino , Camundongos , Proteínas do Grupo Polycomb/genética , Ratos , Espécies Reativas de Oxigênio/metabolismo , Espermatogônias/crescimento & desenvolvimento , Espermatogônias/metabolismo , Nicho de Células-Tronco/genética , Testículo/crescimento & desenvolvimento , Testículo/metabolismoRESUMO
PURPOSE: Anorectal malformations are associated with other organ malformations. Proximodistal elongation of the cloacal plate and anal opening at its distal end are essential for anal development. However, the anal developmental stage in which Wnt5a is directly involved remains unelucidated. Here, we attempted to identify this developmental stage; since Wnt5a is expressed in the mesoderm, and the striated muscle complex (SMC) in mice develops from the mesoderm, we also examined Wnt5a contribution to SMC development. METHODS: We established conditional knockout (CKO) mice in which Wnt5a could be knocked out using an appropriate tamoxifen dose. We evaluated the macroscopic appearance and histopathological features of Wnt5aCKO and wild-type mouse embryos. RESULTS: Wnt5aCKO mice showed phenotypes typical of Wnt5a constitutional knockout mice when Wnt5a was knocked out at E8-E11. Furthermore, the anus failed to open when Wnt5a was knocked out at E8 but opened when it was knocked out at E9 or thereafter. The caudal end of the SMC was dysplastic in Wnt5aCKO mice induced at E8, but was unaffected when mice were induced at E9 or thereafter. CONCLUSION: We suggest a critical role for Wnt5a in anal opening and SMC formation at a very early stage of embryonic development.
Assuntos
Canal Anal , Malformações Anorretais , Desenvolvimento Embrionário , Proteína Wnt-5a , Canal Anal/anormalidades , Animais , Malformações Anorretais/genética , Cloaca , Desenvolvimento Embrionário/genética , Feminino , Camundongos , Camundongos Knockout , Gravidez , Proteína Wnt-5a/genéticaRESUMO
Hematopoietic stem cells (HSCs) are the only cell population that possesses both a self-renewing capacity and multipotency, and can give rise to all lineages of blood cells throughout an organism's life. However, the self-renewal capacity of HSCs is not infinite, and cumulative evidence suggests that HSCs alter their function and become less active during organismal aging, leading ultimately to the disruption of hematopoietic homeostasis, such as anemia, perturbed immunity and increased propensity to hematological malignancies. Thus, understanding how HSCs alter their function during aging is a matter of critical importance to prevent or overcome these age-related changes in the blood system. Recent advances in clonal analysis have revealed the functional heterogeneity of murine HSC pools that is established upon development and skewed toward the clonal expansion of functionally poised HSCs during aging. In humans, next-generation sequencing has revealed age-related clonal hematopoiesis that originates from HSC subsets with acquired somatic mutations, and has highlighted it as a significant risk factor for hematological malignancies and cardiovascular diseases. In this review, we summarize the current fate-mapping strategies that are used to track and visualize HSC clonal behavior during development or after stress. We then review the age-related changes in HSCs that can be inherited by daughter cells and act as a cellular memory to form functionally distinct clones. Altogether, we link aging of the hematopoietic system to HSC clonal evolution and discuss how HSC clones with myeloid skewing and low regenerative potential can be expanded during aging.
Assuntos
Envelhecimento/fisiologia , Células Clonais/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Animais , Diferenciação Celular/fisiologia , Senescência Celular/fisiologia , HumanosRESUMO
Recurrent inactivating mutations have been identified in the X-linked plant homeodomain finger protein 6 (PHF6) gene, encoding a chromatin-binding transcriptional regulator protein, in various hematological malignancies. However, the role of PHF6 in normal hematopoiesis and its tumor-suppressor function remain largely unknown. We herein generated mice carrying a floxed Phf6 allele and inactivated Phf6 in hematopoietic cells at various developmental stages. The Phf6 deletion in embryos augmented the capacity of hematopoietic stem cells (HSCs) to proliferate in cultures and reconstitute hematopoiesis in recipient mice. The Phf6 deletion in neonates and adults revealed that cycling HSCs readily acquired an advantage in competitive repopulation upon the Phf6 deletion, whereas dormant HSCs only did so after serial transplantations. Phf6-deficient HSCs maintained an enhanced repopulating capacity during serial transplantations; however, they did not induce any hematological malignancies. Mechanistically, Phf6 directly and indirectly activated downstream effectors in tumor necrosis factor α (TNFα) signaling. The Phf6 deletion repressed the expression of a set of genes associated with TNFα signaling, thereby conferring resistance against the TNFα-mediated growth inhibition on HSCs. Collectively, these results not only define Phf6 as a novel negative regulator of HSC self-renewal, implicating inactivating PHF6 mutations in the pathogenesis of hematological malignancies, but also indicate that a Phf6 deficiency alone is not sufficient to induce hematopoietic transformation.
Assuntos
Autorrenovação Celular , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas Repressoras/metabolismo , Animais , Proliferação de Células/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
PLZF (promyelocytic leukemia zinc finger) is a transcription factor acting as a global regulator of hematopoietic commitment. PLZF displays an epigenetic specificity by recruiting chromatin-modifying factors but little is known about its role in remodeling chromatin of cells committed toward a given specific hematopoietic lineage. In murine myeloid progenitors, we decipher a new role for PLZF in restraining active genes and enhancers by targeting acetylated lysine 27 of Histone H3 (H3K27ac). Functional analyses reveal that active enhancers bound by PLZF are involved in biological processes related to metabolism and associated with hematopoietic aging. Comparing the epigenome of young and old myeloid progenitors, we reveal that H3K27ac variation at active enhancers is a hallmark of hematopoietic aging. Taken together, these data suggest that PLZF, associated with active enhancers, appears to restrain their activity as an epigenetic gatekeeper of hematopoietic aging.
Assuntos
Envelhecimento/genética , Células-Tronco Hematopoéticas/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Transcrição Gênica , Animais , Diferenciação Celular/genética , Elementos Facilitadores Genéticos , Epigênese Genética/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/genética , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos , Células Progenitoras Mieloides/metabolismo , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico/genéticaRESUMO
Hematopoietic stem cell-containing intra-aortic hematopoietic cell clusters (IAHCs) emerge in the dorsal aorta of the aorta-gonad-mesonephros (AGM) region during midgestation mouse embryos. We previously showed that transduction of Sox17 in CD45lowc-Kithigh cells, which are one component of IAHCs, maintained the cluster formation and the undifferentiated state, but the mechanism of the cluster formation by Sox17 has not been clarified. By microarray gene expression analysis, we found that genes for vascular endothelial-cadherin (VE-cad) and endothelial cell-selective adhesion molecule (ESAM) were expressed at high levels in Sox17-transduced c-Kit+ cells. Here we show the functional role of these adhesion molecules in the formation of IAHCs and the maintenance of the undifferentiated state by in vitro experiments. We detected VE-cad and ESAM expression in endothelial cells of dorsal aorta and IAHCs in E10.5 embryos by whole mount immunohistochemistry. Cells with the middle expression level of VE-cad and the low expression level of ESAM had the highest colony-forming ability. Tamoxifen-dependent nuclear translocation of Sox17-ERT fusion protein induced the formation of cell clusters and the expression of Cdh5 (VE-cad) and ESAM genes. We showed the induction of the Cdh5 (VE-cad) and ESAM expression and the direct interaction of Sox17 with their promoter by luciferase assay and chromatin immunoprecipitation assay, respectively. Moreover, shRNA-mediated knockdown of either Cdh5 (VE-cad) or ESAM gene in Sox17-transduced cells decreased the multilineage-colony forming potential. These findings suggest that VE-cad and ESAM play an important role in the high hematopoietic activity of IAHCs and cluster formation.
Assuntos
Antígenos CD/genética , Caderinas/genética , Moléculas de Adesão Celular/genética , Diferenciação Celular/genética , Proteínas HMGB/genética , Hematopoese/genética , Fatores de Transcrição SOXF/genética , Animais , Aorta/crescimento & desenvolvimento , Aorta/metabolismo , Caderinas/antagonistas & inibidores , Moléculas de Adesão Celular/antagonistas & inibidores , Embrião de Mamíferos , Células Endoteliais/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas HMGB/antagonistas & inibidores , Células-Tronco Hematopoéticas/citologia , Humanos , Camundongos , Gravidez , RNA Interferente Pequeno/farmacologia , Fatores de Transcrição SOXF/antagonistas & inibidoresRESUMO
PURPOSE OF REVIEW: Even though an increasing amount of sequencing data on the leukemia genome has highlighted a tumor-suppressive function for plant homeodomain finger protein 6 (PHF6), its role in the hematopoietic system remained elusive until recently. The purpose of this review is to describe the role of PHF6 in normal hematopoiesis and leukemogenesis based on recent findings from knockout mouse models. RECENT FINDINGS: In a mouse model, the loss of Phf6 enhanced the bone marrow repopulating capacity of hematopoietic stem cells (HSCs) during serial transplantations without transforming hematopoietic cells, whereas donor mice, which lacked Phf6 expression in the hematopoietic system, did not show any apparent phenotypes in the steady-state. Mechanistically, Phf6 activates effectors in the tumor necrosis factor α (Tnfα) pathway. Therefore, a Phf6 deficiency attenuates the expression of the effectors and confers resistance against Tnfα-mediated growth inhibition to HSCs. Moreover, the loss of Phf6 promoted the development of leukemia induced by aberrant TLX3 expression or an active NOTCH mutation. SUMMARY: Phf6 restricts the self-renewal of HSCs by governing the Tnfα pathway. Phf6 fulfills a tumor-suppressive function, and its loss synergizes with leukemic lesions to promote the onset of hematological malignancies.
Assuntos
Carcinogênese/metabolismo , Hematopoese , Leucemia/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Leucemia/genética , Leucemia/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Repressoras/genéticaRESUMO
Monomer tubulin polymerize into microtubules, which are highly dynamic and play a critical role in mitosis. Therefore, microtubule dynamics are an important target for anticancer drugs. The inhibition of tubulin polymerization or depolymerization was previously targeted and exhibited efficacy against solid tumors. The novel small molecule PTC596 directly binds tubulin, inhibits microtubule polymerization, downregulates MCL-1, and induces p53-independent apoptosis in acute myeloid leukemia cells. We herein investigated the efficacy of PTC-028, a structural analog of PTC596, for myelodysplastic syndrome (MDS). PTC-028 suppressed growth and induced apoptosis in MDS cell lines. The efficacy of PTC028 in primary MDS samples was confirmed using cell proliferation assays. PTC-028 synergized with hypomethylating agents, such as decitabine and azacitidine, to inhibit growth and induce apoptosis in MDS cells. Mechanistically, a treatment with PTC-028 induced G2/M arrest followed by apoptotic cell death. We also assessed the efficacy of PTC-028 in a xenograft mouse model of MDS using the MDS cell line, MDS-L, and the AkaBLI bioluminescence imaging system, which is composed of AkaLumine-HCl and Akaluc. PTC-028 prolonged the survival of mice in xenograft models. The present results suggest a chemotherapeutic strategy for MDS through the disruption of microtubule dynamics in combination with DNA hypomethylating agents.
Assuntos
Benzimidazóis/farmacologia , Síndromes Mielodisplásicas/tratamento farmacológico , Pirazinas/farmacologia , Moduladores de Tubulina/farmacologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Benzimidazóis/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Decitabina/farmacologia , Fase G2/efeitos dos fármacos , Células HL-60 , Xenoenxertos , Humanos , Camundongos , Síndromes Mielodisplásicas/genética , Paclitaxel/farmacologia , Pirazinas/uso terapêutico , Análise de Sequência de RNA/métodos , Tubulina (Proteína)/efeitos dos fármacos , Moduladores de Tubulina/uso terapêutico , Vincristina/farmacologiaRESUMO
Polycomb-group proteins are critical regulators of stem cells. We previously demonstrated that Bmi1, a component of polycomb repressive complex 1, defines the regenerative capacity of hematopoietic stem cells (HSCs). Here, we attempted to ameliorate the age-related decline in HSC function by modulating Bmi1 expression. The forced expression of Bmi1 did not attenuate myeloid-biased differentiation of aged HSCs. However, single cell transplantation assays revealed that the sustained expression of Bmi1 augmented the multi-lineage repopulating capacity of aged HSCs. Chromatin immunoprecipitation-sequencing of Bmi1 combined with an RNA sequence analysis showed that the majority of Bmi1 direct target genes are developmental regulator genes marked with a bivalent histone domain. The sustained expression of Bmi1 strictly maintained the transcriptional repression of their target genes and enforced expression of HSC signature genes in aged HSCs. Therefore, the manipulation of Bmi1 expression is a potential approach against impairments in HSC function with aging.