RESUMO
Determining the molecular mechanism of fruit tree architecture is important for tree management and fruit production. An apple mutant 'McIntosh Wijcik', which was discovered as a bud mutation from 'McIntosh', exhibits a columnar growth phenotype that is controlled by a single dominant gene, Co. In this study, the mutation and the Co gene were analyzed. Fine mapping narrowed the Co region to a 101 kb region. Sequence analysis of the Co region and the original wild-type co region identified an insertion mutation of an 8202 bp long terminal repeat (LTR) retroposon in the Co region. Segregation analysis using a DNA marker based on the insertion polymorphism showed that the LTR retroposon was closely associated with the columnar growth phenotype. RNA-seq and RT-PCR analysis identified a promising Co candidate gene (91071-gene) within the Co region that is specifically expressed in 'McIntosh Wijcik' but not in 'McIntosh'. The 91071-gene was located approximately 16 kb downstream of the insertion mutation and is predicted to encode a 2-oxoglutarate-dependent dioxygenase involved in an unknown reaction. Overexpression of the 91071-gene in transgenic tobaccos and apples resulted in phenotypes with short internodes, like columnar apples. These data suggested that the 8202 bp retroposon insertion in 'McIntosh Wijcik' is associated with the short internodes of the columnar growth phenotype via upregulated expression of the adjacent 91071-gene. Furthermore, the DNA marker based on the insertion polymorphism could be useful for the marker-assisted selection of columnar apples.
Assuntos
Dioxigenases/genética , Malus/genética , Mutagênese Insercional/genética , Proteínas de Plantas/genética , Retroelementos/genética , Mapeamento Cromossômico , Dioxigenases/metabolismo , Malus/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA , Transcriptoma/genéticaRESUMO
The apple (Malus × domestica Borkh.) is one of the commercially important fruit crops in the worldwide. The apple has a relatively long juvenile period (up to 4 years) and a long reproductive period between the flower initiation and the mature fruit (14-16 months), which prevent the fruit breeding. Therefore, the understanding of the flowering system is important to improve breeding efficiency in the apple. In this study, to examine the temporal and spatial expression patterns of the floral genes, MdTFL1, MdAP1 (MdMASD5), AFL2, and MdFT, we conducted in situ hybridization analysis in the apple shoot apex. In vegetative phase, MdTFL1 was expressed on the rib meristem zone. When vegetative meristem began converting into inflorescence meristem, the expression level of MdTFL1 was drastically decreased. At the early stage of inflorescence meristem, the expression levels of AFL2, MdFT, and MdAP1 were up-regulated in the leaf primordia and the upper region of cell layers on the shoot apex. In late stage, the expression levels of AFL2 and MdAP1 were up-regulated in the young floral primordia. At a more advanced stage, high expression of MdAP1 was observed in the inflorescence primordium through the inner layer of sepal primordia and the outer layer of receptacle primordia and floral axis. Our results suggest that AFL2, MdFT, and MdAP1 affect to convert from the vegetative meristem into the inflorescence meristem after the decline of MdTFL1 expression. After that, AFL2 and MdAP1 promote the formation of the floral primordia and floral organs.
Assuntos
Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Malus/genética , Meristema/crescimento & desenvolvimento , Flores/genética , Flores/metabolismo , Genes de Plantas , Hibridização In Situ , Malus/metabolismo , Meristema/genética , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
The two FLOWERING LOCUS T (FT)-like genes of apple (Malus x domestica Borkh.), MdFT1 and MdFT2, have been isolated and characterized. MdFT1 and MdFT2 were mapped, respectively, on distinct linkage groups (LGs) with partial homoeology, LG 12 and LG 4. The expression pattern of MdFT1 and MdFT2 differed in that MdFT1 was expressed mainly in apical buds of fruit-bearing shoots in the adult phase, with little expression in the juvenile tissues, whereas MdFT2 was expressed mainly in reproductive organs, including flower buds and young fruit. On the other hand, both genes had the potential to induce early flowering since transgenic Arabidopsis, which ectopically expressed MdFT1 or MdFT2, flowered earlier than wild-type plants. Furthermore, overexpression of MdFT1 conferred precocious flowering in apple, with altered expression of other endogenous genes, such as MdMADS12. These results suggest that MdFT1 could function to promote flowering by altering the expression of those genes and that, at least, other genes may play an important role as well in the regulation of flowering in apple. The long juvenile period of fruit trees prevents early cropping and efficient breeding. Our findings will be useful information to unveil the molecular mechanism of flowering and to develop methods to shorten the juvenile period in various fruit trees, including apple.
Assuntos
Malus/metabolismo , Malus/fisiologia , Proteínas de Plantas/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/genética , Flores/metabolismo , Flores/fisiologia , Frutas/genética , Frutas/metabolismo , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Malus/genética , Dados de Sequência Molecular , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de AminoácidosRESUMO
Recent molecular analyses in several plant species revealed that TERMINAL FLOWER1 (TFL1) and CENTRORADIALIS (CEN) homologs are involved in regulating the flowering time and/or maintaining the inflorescence meristem. In apple (Malusxdomestica Borkh.), four TFL1/CEN-like genes, MdTFL1, MdTFL1a, MdCENa and MdCENb, were found and mapped by a similar position on putatively homoeologous linkage groups. Apple TFL1/CEN-like genes functioned equivalently to TFL1 when expressed constitutively in transgenic Arabidopsis plants, suggesting that they have a potential to complement the TFL1 function. Because MdTFL1 and MdTFL1a were expressed in the vegetative tissues in both the adult and juvenile phases, they could function redundantly as a flowering repressor and a regulator of vegetative meristem identity. On the other hand, MdCENa was mainly expressed in fruit receptacles, cultured tissues and roots, suggesting that it is involved in the development of proliferating tissues but not in the control of the transition from the juvenile to the adult phase. In contrast, MdCENb was silenced in most organs probably due to gene duplication by the polyploid origin of apple. The expression patterns of MdTFL1 and MdCENa in apple were also supported by the heterologous expression of beta-glucuronidase fused with their promoter regions in transgenic Arabidopsis. Our results suggest that functional divergence of the roles in the regulation of vegetative meristem identity may have occurred among four TFL1/CEN-like genes during evolution in apple.
Assuntos
Malus/genética , Meristema/crescimento & desenvolvimento , Família Multigênica , Proteínas de Plantas/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Mapeamento Cromossômico , Clonagem Molecular , DNA de Plantas/genética , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Malus/crescimento & desenvolvimento , Meristema/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Alinhamento de Sequência , Análise de Sequência de DNARESUMO
It is known that an epidermal growth factor receptor (EGFR) gene mutation(s) is present in a percentage of non-small cell lung cancers (NSCLCs). Gefitinib, an inhibitor of the tyrosine kinase activity of EGFR, is effective on most of them. The EGFR mutation status alone cannot fully predict the response to gefitinib and the prognosis for the patients. We hypothesized that information on the expression levels of phosphorylated-EGFR and -Akt, and E-cadherin, alone or in combination with information on the EGFR mutation, may refine our ability of prediction. We investigated 24 NSCLCs that had recurred after surgery and were treated with gefitinib. Specimens resected by surgery were subjected to the peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp reaction to determine the EGFR mutation status, and to immunohistochemical staining of phosphorylated-EGFR and -Akt, and E-cadherin to determine their expression levels. The EGFR mutation status was predictive of responsive disease (complete response: CR + partial response: PR) and controlled disease (CR + PR + stable disease: SD). Positive E-cadherin staining was predictive of longer time to progression (12.4 vs. 5.9 months, p<0.05) and overall survival (OS) (18.4 vs. 13.0 months, p<0.05). Together the patients with an EGFR mutation and the patients with positive E-cadherin staining defined a patient group with a median OS of 18.4 months and excluded the patient group with the median OS of 3.7 months. Neither p-Akt nor p-EGFR staining was associated with the response and survival. In patients with surgically resected NSCLC tumors, the EGFR mutation status and E-cadherin staining can select patients who will benefit from gefitinib therapy.
Assuntos
Caderinas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinas/uso terapêutico , Caderinas/análise , Análise Mutacional de DNA , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Feminino , Gefitinibe , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Fosforilação , Prognóstico , Proteínas Proto-Oncogênicas c-akt/análise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resultado do TratamentoRESUMO
Apple MdMADS13 has a transcription factor with MADS domain. Moreover, it is expressed specifically at petals and carpels. The product forms a dimer with MdPISTILLATA (MdPI) protein as a class B gene for floral organ formation. Reportedly, in parthenocarpic cultivars of apple (Spencer Seedless, Wellington Bloomless, Wickson and Noblow) the MdPI function is lost by genome insertion of retrotransposon, which cultivars show a homeotic mutation of floral organs, petals to sepals and stamens to carpels. Apple fruit is pome from receptacle tissue, and MdSEPALLATA (MdMADS8/9) and AGAMOUS homologues MdMADS15/22 involved in the fruit development, the transgenic apple suppressed these gene showed poor fruit development and abnormal flower formation. This article describes that the MdMADS13 retained expression after blossom and small fruits of parthenocarpic cultivars. Yeast two-hybrid experiment showed specific binding between MdPI and MdMADS13 proteins. Furthermore, transgenic Arabidopsis with 35S::MdMADS13 have malformed stamens and carpels. These results suggest strongly that MdMADS13 is related to flower organ formation as a class B gene with MdPI.
RESUMO
In parthenocarpic cultivars of apple (Malus×domestica Borkh.), MdPISTILLATA (MdPI) expression has been suppressed by retrotransposon insertion into the MdPI genome. In this study, transgenic apple lines were produced that exhibited the same level of MdPI depression. The 1P-2 promoter from the MdPI genome, which specifies its expression in the petals and stamens, was used for antisense-MdPI expression, and rolC:AtFT was included to accelerate flowering. The transgenic apple with rolC:AtFT/1P-2:antisense-MdPI showed homeotic changes in the floral organs, whereby petals and stamens were replaced with sepals and pistils, respectively. Line 9-2 of this transgenic apple also showed strong suppression of MdPI. Some individuals from this line had deformed floral organs, suggesting that the homeotic changes were incomplete. Other transformants of line 9-2 that had double sepals in the first and second whorls, and many pistils in the third and fourth whorls, as seen in apple cultivars with class B mutations, which demonstrated MdPI functioned for floral organs formation same as Arabidopsis PISTILLATA gene. The transgenic apples set parthenocarpic fruits (15.7%). However, precocious transgenic apples with rolC:AtFT exhibited more parthenocarpy (14-27%). This indicates that MdPI depression cannot explain fruit formation in parthenocarpic cultivars of apple, and so some other as yet unidentified genes must be responsible.
RESUMO
OBJECTIVE: A prospective randomized trial was performed to investigate the prognostic advantage of postoperative adjuvant chemotherapy in patients with resected stage I-II non-small cell lung cancer (NSCLC). PATIENTS AND METHODS: From March 1992 to December 1994, 221 patients with completely resected stage I-II primary NSCLC were enrolled and randomly assigned to two groups, as follows: 2-year oral administration of Uracil plus Tegafur (UFT) (adjuvant group, 109 patients), and surgical treatment alone (control group, 110 patients). RESULTS: The overall 5-year survival rates were 79% for the adjuvant group and 75% for the control group, and there was no statistical significance. The 5-year disease-free survival rates were 78% for the adjuvant group and 71% for the control group, and there was also no statistical significance. There have been seen no severe complications in the adjuvant group. The mean total dosages of UFT were about 75% of maximum basic amount. CONCLUSIONS: The UFT regimen was feasible. However, we have not observed any survival benefit in the adjuvant group. Larger trials are needed to confirm the effect of UFT to patients with resected NSCLC.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Tegafur/uso terapêutico , Uracila/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Feminino , Seguimentos , Humanos , Japão , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Cuidados Pós-Operatórios , Prognóstico , Estudos Prospectivos , Procedimentos Cirúrgicos Pulmonares , Taxa de SobrevidaRESUMO
Understanding the flowering process in apple (Malus × domestica Borkh.) is essential for developing methods to shorten the breeding period and regulate fruit yield. It is known that FLOWERING LOCUS T (FT) acts as a transmissible floral inducer in the Arabidopsis flowering network system. To clarify the molecular network of two apple FT orthologues, MdFT1 and MdFT2, we performed a yeast two-hybrid screen to identify proteins that interact with MdFT1. We identified several transcription factors, including two members of the TCP (TEOSINTE BRANCHED1, CYCLOIDEA and PROLIFERATING CELL FACTORs) family, designated MdTCP2 and MdTCP4, and an Arabidopsis thaliana VOZ1 (Vascular plant One Zinc finger protein1)-like protein, designated MdVOZ1. MdTCP2 and MdVOZ1 also interacted with MdFT2 in yeast. The expression domain of MdTCP2 and MdVOZ1 partially overlapped with that of MdFT1 and MdFT2, most strikingly in apple fruit tissue, further suggesting a potential interaction in vivo. Constitutive expression of MdTCP2, MdTCP4 and MdVOZ1 in Arabidopsis affected plant size, leaf morphology and the formation of leaf primordia on the adaxial side of cotyledons. On the other hand, chimeric MdTCP2, MdTCP4 and MdVOZ1 repressors that included the ethylene-responsive transcription factors (ERF)-associated amphiphilic repression (EAR) domain motif influenced reproduction and inflorescence architecture in transgenic Arabidopsis. These results suggest that MdFT1 and/or MdFT2 might be involved in the regulation of cellular proliferation and the formation of new tissues and that they might affect leaf and fruit development by interacting with TCP- and VOZ-family proteins. DDBJ accession nos. AB531019 (MdTCP2a mRNA), AB531020 (MdTCP2b mRNA), AB531021 (MdTCP4a mRNA), AB531022 (MdTCP4b mRNA) and AB531023 (MdVOZ1a mRNA).
Assuntos
Malus/crescimento & desenvolvimento , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Sequência de Bases , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Malus/genética , Dados de Sequência Molecular , Organogênese/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genéticaRESUMO
The full-length cDNAs of eight S ribonucleases (S-RNases) were cloned from stylar RNA of European pear cultivars that could not be characterized by the cleaved amplified polymorphic sequences (CAPS) marker system for genotyping European pear cultivars harboring nine S alleles Sa, Sb, Sd, Se, Sh, Sk, Sl, Sq, and Sr. Comparison of the nucleotide sequences between these cDNAs and six putative S-RNase alleles previously amplified by genomic PCR revealed that five corresponded to the putative Sc-, Si-, Sm-, Sn-, and Sp-RNase alleles and the other three corresponded new S-RNase alleles (designated as putative Sg-, Ss-, and St-RNase alleles). Genomic PCR with a new set of primers was used to amplify 17 S-RNase alleles: 1906 bp (Sg), 1642 bp (St), 1414 bp (Sl), ca. 1.3 kb (Sk and Sq), 998 bp (Se), 440 bp (Sb), and ca. 350 bp (Sa, Sc, Sd, Sh, Si, Sm, Sn, Sp, Sr, and Ss). Among them, S-RNase alleles of similar size were discriminated by digestion with 11 restriction endo-nucleases. The PCR amplification of 17 S-RNase alleles following digestion with the restriction endonucleases provided a new CAPS marker system for rapid S-genotyping of European pear cultivars harboring 17 S alleles. Using the CAPS analysis, Sc, Sg, Si, Sm, Sn, Sp, Ss, and St alleles were found in 32 cultivars, which were classified into 23 S-genotypes.