Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Brain ; 142(6): 1675-1689, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31135049

RESUMO

The mechanism by which dopaminergic neurons are selectively affected in Parkinson's disease is not fully understood. In this study, we found a dramatic increase in the expression of catechol-O-methyltransferase (COMT), along with a lower level of DNA methylation, in induced pluripotent stem cell-derived dopaminergic neurons from patients with parkin (PARK2) gene mutations compared to those from healthy controls. In addition, a significant increase in the expression of COMT was found in dopaminergic neurons of isogenic PARK2 induced pluripotent stem cell lines that mimicked loss of function of PARK2 by CRISPR Cas9 technology. In dopamine transporter (DAT)-Cre mice, overexpression of COMT, specifically in dopaminergic neurons of the substantia nigra, produced cataleptic behaviours associated with impaired motor coordination. These findings suggest that upregulation of COMT, likely resulting from DNA hypomethylation, in dopaminergic neurons may contribute to the initial stage of neuronal dysfunction in Parkinson's disease.


Assuntos
Catecol O-Metiltransferase/genética , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos Transgênicos , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Substância Negra/metabolismo
2.
Int J Mol Sci ; 20(4)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769780

RESUMO

Human induced pluripotent stem cells (iPSCs) hold enormous promise for regenerative medicine. The major safety concern is the tumorigenicity of transplanted cells derived from iPSCs. A potential solution would be to introduce a suicide gene into iPSCs as a safety switch. The herpes simplex virus type 1 thymidine kinase (HSV-TK) gene, in combination with ganciclovir, is the most widely used enzyme/prodrug suicide system from basic research to clinical applications. In the present study, we attempted to establish human iPSCs that stably expressed HSV-TK with either lentiviral vectors or CRISPR/Cas9-mediated genome editing. However, this task was difficult to achieve, because high-level and/or constitutive expression of HSV-TK resulted in the induction of cell death or silencing of HSV-TK expression. A nucleotide metabolism analysis suggested that excessive accumulation of thymidine triphosphate, caused by HSV-TK expression, resulted in an imbalance in the dNTP pools. This unbalanced state led to DNA synthesis inhibition and cell death in a process similar to a "thymidine block", but more severe. We also demonstrated that the Tet-inducible system was a feasible solution for overcoming the cytotoxicity of HSV-TK expression. Our results provided a warning against using the HSV-TK gene in human iPSCs, particularly in clinical applications.


Assuntos
Terapia Genética , Células-Tronco Pluripotentes Induzidas/enzimologia , Simplexvirus/enzimologia , Timidina Quinase/genética , Apoptose/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Ganciclovir/farmacologia , Edição de Genes , Regulação Enzimológica da Expressão Gênica/genética , Regulação Viral da Expressão Gênica/genética , Genes Transgênicos Suicidas/genética , Vetores Genéticos/uso terapêutico , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Lentivirus/genética , Nucleotídeos/biossíntese , Nucleotídeos/genética , Simplexvirus/genética
3.
Hum Gene Ther ; 31(5-6): 352-366, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32075424

RESUMO

Glioblastoma is the most aggressive brain tumor characterized by diffuse infiltration into the normal brain parenchyma. Neural stem cells are known to possess the tumor-tropic migratory capacity and thus can be used as cellular vehicles for targeted delivery of therapeutic agents. In the present study, we evaluated the efficacy of herpes simplex virus thymidine kinase (HSV-TK) suicide gene therapy for glioblastoma using neural stem/progenitor cells (NS/PCs) derived from human induced pluripotent stem cells (hiPSCs). Although transduction of hiPSCs is preferable for a safe and stable supply in the clinical setting, high-level and/or constitutive HSV-TK expression was highly cytotoxic to hiPSCs. To overcome this problem, we used the tetracycline-inducible system to control the expression of HSV-TK. hiPSC-derived NS/PCs expressing HSV-TK were transplanted in an orthotopic xenograft mouse model of human glioblastoma. Glioblastoma cell growth in mice was dramatically inhibited following ganciclovir (GCV) administration. Survival of the mice was significantly prolonged with administration of GCV compared with control groups. Time-lapse imaging of organotypic brain slice cultures first demonstrated the directional migration of NS/PCs toward glioblastoma cells and the bystander killing effect upon GCV treatment. hiPSC-derived NS/PCs with HSV-TK/GCV suicide gene system may have considerable therapeutic potential for the treatment of glioblastoma. Color images are available online.


Assuntos
Efeito Espectador , Terapia Genética , Glioblastoma/genética , Glioblastoma/terapia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Modelos Animais de Doenças , Feminino , Ganciclovir/administração & dosagem , Vetores Genéticos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simplexvirus/genética , Timidina Quinase/genética , Imagem com Lapso de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Neurosci Res ; 149: 38-49, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30685491

RESUMO

Somatostatin reduces neuronal excitability via somatostatin receptors (Sst1-Sst5) and inhibits seizure activity. However, the expression status of the Sst subtypes in epileptic mice and their role in the antiepileptic effects of somatostatin remain unclear. Here, we show that the Sst subtypes are regulated differently by epileptic neuronal activity in mice. Systemic kainate injection rapidly and transiently elevated the Sst2 and Sst3 mRNA and reduced Sst1 and Sst4 mRNA in the hippocampus; however, among all the subtypes, only Sst2 mRNA was increased in the excitatory neurons of the basolateral amygdala, accompanied by a decrease in the level of Sst2 protein. Following kainate administration, recovery from seizure was delayed by reduced expression of Sst2 in the basolateral amygdala, but not in the dentate gyrus of the hippocampus; higher expression levels of Bdnf, a neuronal activity marker, were observed in both conditions. These results suggest that Sst2 contributes to seizure termination by feedback inhibition in the amygdala. This could be a potential therapeutic target for acute seizures.


Assuntos
Hipocampo/metabolismo , Receptores de Somatostatina/metabolismo , Receptores de Somatostatina/fisiologia , Convulsões/metabolismo , Animais , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ácido Caínico/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Convulsões/induzido quimicamente
5.
Mol Brain ; 12(1): 5, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30658665

RESUMO

Parkinson's disease (PD) is associated with both motor and non-motor symptoms, including constipation, sensory neuropathy, depression, dementia and sleep disorder. Somatostatin (SST) is considered to be a modulator of GABAergic inhibitory transmission, and its levels are reduced in cerebrospinal fluid of PD patients. In the present study, we evaluated the changes in the expression of SST in GABAergic neurons derived from induced pluripotent stem cells (iPSCs) of PD patients. Neural cells were co-treated with the Wnt antagonist IWP-2 and Shh during neurosphere formation to induce GABA-positive forebrain interneurons. Quantitative analyses showed no significant differences, but slight decreases, in the potency of differentiation into GABAergic neurons derived from iPSCs between healthy control and patients with PARK2 mutations, who have been classified as a type of early-onset familial PD due to mutations in the parkin gene. Under this condition, the mRNA level of SST in GABAergic interneurons derived from iPSCs of PARK2-specific PD patients significantly decreased as neural maturation progressed. We also found that SST-positive GABAergic neurons were clearly reduced in GABAergic neurons derived from iPSCs of patients with PARK2 mutations. These findings suggest that the reduction in the expression level of SST in GABAergic interneurons of PD may, at least partly, lead to complex PD-induced symptoms.


Assuntos
Neurônios GABAérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Interneurônios/metabolismo , Mutação/genética , Somatostatina/metabolismo , Ubiquitina-Proteína Ligases/genética , Diferenciação Celular , Linhagem Celular , Feminino , Neurônios GABAérgicos/patologia , Humanos , Interneurônios/patologia , Masculino
6.
Mol Brain ; 12(1): 45, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31060588

RESUMO

Glioblastoma exhibits phenotypic and genetic heterogeneity, aggressive invasiveness, therapeutic resistance, and tumor recurrence, which can be explained by the existence of glioma stem cells (GSCs). In this study, we visualized the spatiotemporal dynamics of invasion of human GSCs in an orthotopic xenograft mouse model using time-lapse imaging of organotypic brain slice cultures and three-dimensional imaging of optically cleared whole brains. GSCs implanted in the striatum exhibited directional migration toward axon bundles, perivascular area, and the subventricular zone around the inferior horn of the lateral ventricle. GSCs migrated in a helical pattern around axon bundles in the striatum and invaded broadly in both the rostral and caudal directions. GSCs in the corpus callosum migrated more rapidly and unidirectionally toward the contralateral side with pseudopod extension. These characteristics of GSC invasion shared histological features observed in glioblastoma patients. Spatiotemporal visualization techniques can contribute to the elucidation of the mechanisms underlying GSC invasion that may lead to the development of effective therapy for glioblastoma.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Células-Tronco Neoplásicas/patologia , Animais , Encéfalo/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Imageamento Tridimensional , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Imagem com Lapso de Tempo
7.
Mol Brain ; 11(1): 6, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29458391

RESUMO

Ghrelin exerts a wide range of physiological actions throughout the body and appears to be a promising target for disease therapy. Endogenous ghrelin receptors (GHSRs) are present in extrahypothalamic sites including the substantia nigra pars compacta (SNc), which is related to phenotypic dysregulation or frank degeneration in Parkinson's disease (PD). Here we found a dramatic decrease in the expression of GHSR in PD-specific induced pluripotent stem cell (iPSC)-derived dopaminergic (DAnergic) neurons generated from patients carrying parkin gene (PARK2) mutations compared to those from healthy controls. Consistently, a significant decrease in the expression of GHSR was found in DAnergic neurons of isogenic PARK2-iPSC lines that mimicked loss of function of the PARK2 gene through CRISPR Cas9 technology. Furthermore, either intracerebroventricular injection or microinjection into the SNc of the selective GHSR1a antagonist [D-Lys3]-GHRP6 in normal mice produced cataleptic behaviors related to dysfunction of motor coordination. These findings suggest that the down-regulation of GHSRs in SNc-DA neurons induced the initial dysfunction of DA neurons, leading to extrapyramidal disorder under PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Regulação para Baixo , Atividade Motora , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Receptores de Grelina/genética , Substância Negra/metabolismo , Substância Negra/patologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Neurônios Dopaminérgicos/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Injeções Intraventriculares , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Oligopeptídeos/farmacologia , Doença de Parkinson/metabolismo , Receptores de Grelina/antagonistas & inibidores , Receptores de Grelina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
PLoS One ; 12(2): e0172115, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28225782

RESUMO

BACKGROUND: The EGFR tyrosine kinase inhibitor gefitinib is used in therapy for non-small-cell lung cancer (NSCLC). However, its application is limited by resistance-accelerated disease progression, which is accompanied by the epithelial-to-mesenchymal transition (EMT). In the present study, we performed multiple expression analyses of microRNAs (miRNAs) and quantified the expression of several related EMT players in gefitinib-resistant NSCLC cells. METHODS AND RESULTS: To establish gefitinib-resistant NSCLC cells, gefitinib-sensitive HCC827 cells, which exhibit an in-frame deletion [E746-A750] in EGFR exon 19, were exposed to gefitinib for at least 1.5 months. Next, to profile "gefitinib-resistant HCC827 (HCC827GR)" cells, which have a secondary T790M mutation in EGFR exon 20, a miRNA array analysis was performed in HCC827 and HCC827GR cells. The greatest differences were seen in the levels of miR-155 and miR-200c, which essentially disappeared in HCC827GR cells. In addition to these reductions, the levels of smad2 and zeb1, which are both key players in EMT and targets for miR-155 and miR-200c, respectively, were dramatically increased in HCC827GR cells. In HCC827GR cells, the expression of epithelial-cadherin (E-cadherin) was greatly reduced with repressive histone modifications, whereas vimentin, which is expressed in mesenchymal cells, was dramatically increased with active histone modifications. In another gefitinib-resistant NSCLC cell line (H1975 cells), similar to the findings in HCC827GR cells, both miR-155 and miR-200c were absent, and the EMT was induced along with epigenetic modifications. Interestingly, the inhibition of both miR-155 and miR-200c in HCC827 cells without gefitinib induced significant increases in smad2 and zeb1 along with a dramatic decrease in E-cadherin and a slight increase in vimentin. Furthermore, although the inhibition of these miRNAs in HCC827 cells decreased gefitinib sensitivity, this dual-inhibition in HCC827 cells without gefitinib did not produce a secondary T790M mutation in EGFR exon 20. CONCLUSION AND IMPLICATIONS: These results suggest that chronic treatment of NSCLC cells with gefitinib changes the expression of miRNAs, including dramatic reductions in miR-155 and miR-200c along with an EGFR mutation. Furthermore, this depletion of miR-155 and miR-200c may be associated with the EMT along with histone modifications, and may contribute to the decrease in the sensitivity to gefitinib independent of a secondary EGFR mutation.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Epigênese Genética/efeitos dos fármacos , Neoplasias Pulmonares/genética , MicroRNAs/genética , Quinazolinas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Gefitinibe , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA