Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 40(20): 10695-10704, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38713153

RESUMO

We demonstrate that nanopores of activated carbon (AC) function as nanoreactors that oxidize perylene (PER) to a redox-active organic compound, 3,10-perylenedione (PERD), without any metal catalysts or organic solvents. PER is first adsorbed on AC in the gas phase, and the PER-adsorbed AC is subjected to electrochemical oxidation in aqueous H2SO4 as the electrolyte. Because gas-phase adsorption is solvent-free, PER is completely adsorbed on AC as long as the amount of PER does not exceed the saturated adsorption capacity of the AC, which enables accurate control of the amount adsorbed. PER is electrochemically oxidized to PERD in the nanopores of AC at above 0.7 V vs Ag/AgCl. The hybridized PERD undergoes a rapid reversible two-electron redox reaction in the nanopores owing to the large contact interface between the conductive carbon pore surfaces and PERD. The resulting AC/PERD hybrids serve as electrodes for electrochemical capacitors, utilizing the rapid redox reaction of PERD. The hybridization method is advantageous for quantitatively optimizing electrochemical capacitor performance by adjusting the amount of adsorbed PER. Moreover, because PERD hybridization in the AC nanopores does not expand the electrode volume, the volumetric capacitance increases with increasing hybridized PERD content. In three-electrode cell measurements, the volumetric capacitance at 0.05 A g-1 reaches 299 F cm-3, and 61% of this capacitance is retained at 10 A g-1 when 5 mmol of PER is used per gram of AC. Meanwhile, pristine AC delivers 117 F cm-3 at 0.05 A g-1 with a capacitance retention of 46% at 10 A g-1. Two-electrode cell measurements reveal that self-discharge is significantly suppressed by the hybridized PERD when AC/PERD hybrids and AC are used as cathodes and anodes, respectively, compared to that of a symmetrical AC cell. Moreover, PERD does not undergo cross-diffusion in the asymmetrical cells during self-discharge tests for 24 h.

2.
Am J Bot ; 111(5): e16327, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38725176

RESUMO

PREMISE: Quaternary climatic fluctuations and long-distance seed dispersal across the sea are critical factors affecting the distribution of coastal plants, but the spatiotemporal nature of population expansion and distribution change of East Asian coastal plants during this period are rarely examined. To explore this process, we investigated the genome-wide phylogenetic patterns of Euphorbia jolkinii Boiss. (Euphorbiaceae), which grows widely on littoral areas of Japan, Korea, and Taiwan. METHODS: We used plastome sequences and genome-wide single nucleotide polymorphisms in samples across the species range to reveal phylogeographic patterns and spatiotemporal distributional changes. We conducted ecological niche modeling for the present and the last glacial maximum (LGM). RESULTS: Genetic differentiation was observed between the northern and southern populations of E. jolkinii, separated by the major biogeographic boundary, the Tokara Gap. These two groups of populations differentiated during the glacial period and subsequently intermingled in the intermorainic areas of the central Ryukyu Islands after the LGM. Ecological niche models suggested that the potential range of E. jolkinii was restricted to southern Kyushu; however, it was widespread in the southern Ryukyu Islands and Taiwan during the LGM. CONCLUSIONS: This study provides evidence of genetic differentiation among coastal plant populations separated by the prominent biogeographical boundary. Although coastal plants are typically expected to maintain population connectivity through sea-drifted seed dispersal, our findings suggest that genetic differences may arise because of a combination of limited gene flow and changes in climate during the glacial period.


Assuntos
Euphorbia , Filogeografia , Euphorbia/genética , Euphorbia/fisiologia , Ásia Oriental , Filogenia , Polimorfismo de Nucleotídeo Único , Variação Genética , Ecossistema
3.
Biochem Biophys Res Commun ; 679: 160-166, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37696069

RESUMO

Extracellular substances, including membrane-impermeable nutrients, are taken up by cells via endocytosis. Endocytosis is also an important pathway for antigen uptake by antigen-presenting cells such as monocytes, macrophages, dendritic cells, and B cells. In this study, we investigated the regulatory mechanism of endocytosis in THP-1 cells, a monocytic leukemia cell line. We analyzed the effect of IgG and insulin, which are abundant in the serum and play important roles in immunity and metabolism, respectively, on the endocytic activity in THP-1 cells. The results indicated that IgG and insulin enhance pinocytosis and phagocytosis via activation of phosphatidylinositol 3-kinase (PI3K). Our results suggest that IgG and insulin contribute to the maintenance of endocytic activity and are important for antigen presentation and nutrient uptake.


Assuntos
Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Insulina , Células THP-1 , Endocitose , Monócitos/metabolismo , Imunoglobulina G
4.
Biochem Biophys Res Commun ; 645: 1-9, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36657293

RESUMO

Endocytosis has been shown to play an important role in cancer proliferation and metastasis. Recent studies have accumulated evidence that endocytosis inhibitors suppress in vitro and in vivo proliferation and migration. In addition, endocytosis inhibition has been shown to induce apoptosis, but its mechanism remains largely unclear. In this study, we found that the endocytosis inhibitor dynasore causes a cell viability reduction in multiple cancer cell lines, especially in hematopoietic cancers. Dynasore induced massive apoptosis and an S-phase progression delay. In addition, dynasore activated the ATR-Chk1 DNA damage response, which suggests a single-stranded DNA exposure induced by DNA replication stress. Furthermore, an ATR inhibitor sensitized the dynasore-induced apoptosis. These findings suggest that endocytosis inhibitors may have an ability to suppress DNA replication, a common mechanism of genotoxic chemotherapies targeting cancer, and that the anti-cancer effects of endocytosis inhibitors may be sensitized by DNA damage response inhibitors.


Assuntos
Apoptose , Dano ao DNA , Linhagem Celular , Endocitose , Quinase 1 do Ponto de Checagem/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
5.
Exp Cell Res ; 418(1): 113246, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35697076

RESUMO

Mechanistic target of rapamycin complex 1 (mTORC1) phosphorylates and inhibits eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1). This leads to the release of eIF4E from 4E-BP1 and the initiation of eIF4E-dependent mRNA translation. In this study, we examined the expression of a 4E-BP1-based reporter (mTORC1 activity reporter; TORCAR) with various localization signal tags to clarify the relationship between the localization of 4E-BP1 and its phosphorylation. Phosphorylation of 4E-BP1 at threonine 37/46 and serine 65 was efficient at lysosomes and the plasma membrane, whereas it was significantly decreased in the nucleus. In addition, the localization of endogenous eIF4E shifted from the cytoplasm to the nucleus only when nuclear-localized TORCAR was expressed. Nuclear-localized TORCAR decreased cyclin D1 protein levels and altered cell cycle distribution. These data provide an experimental tool to manipulate the localization of endogenous eIF4E without affecting mTORC1 and highlight the important role of nuclear-cytoplasmic shuttling of eIF4E.


Assuntos
Fator de Iniciação 4E em Eucariotos , Biossíntese de Proteínas , Proteínas de Ciclo Celular/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação
6.
Langmuir ; 38(39): 12024-12034, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36129205

RESUMO

Norbornadiene (NBD) is adsorbed on activated carbon (AC), and the adsorbed NBD is polymerized within the pores of AC. Two kinds of ACs─AC-2 with only micropores of ∼2 nm and AC-4 with not only micropores but also mesopores below 4 nm─are examined to study the effects of the hybridized polynorbornadiene (PNBD) on the electric double-layer capacitor and hydrogen adsorption performance. Various measurements are performed to determine the form of the hybridized PNBD inside the pores of AC. Scanning and transmittance electron microscopy observations of the AC/PNBD hybrids confirm that PNBD is hybridized inside the pores of AC, and there is little PNBD on the surface of AC particles. The nitrogen adsorption/desorption measurement for the hybrids of AC-4 reveals that PNBD is not hybridized preferentially inside micropores rather than mesopores irrespective of the amount of PNBD. In addition, both micropore and mesopore volumes decrease at a constant rate with increasing amounts of PNBD. These results suggest that PNBD is hybridized not as a layer but as an agglomerate for both ACs, and the agglomerate delocalizes over the whole AC pores, which is supported by the results of electrochemical measurements and hydrogen adsorption behavior of the hybrids.

7.
Biochem Biophys Res Commun ; 552: 30-36, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33740662

RESUMO

Alpha-1 acid glycoprotein (AGP) is a major acute-phase protein that is involved in drug/ligand binding and regulation of immune response. In response to inflammation, AGP secretion from the liver increases, resulting in elevated concentration of plasma AGP. AGP exhibits multiple N-glycosylation sites, and thus, is highly glycosylated. Although AGP glycosylation is considered to affect its functions, the significance of AGP glycosylation for its secretion is unclear. In this study, we investigated the effects of AGP glycosylation using glycosylation-deficient mouse AGP mutants lacking one, four, or all five N-glycosylation sites. Furthermore, we examined the effects of endoplasmic reticulum (ER) stress-inducing reagents, including tunicamycin and thapsigargin, which induce ER stress in an N-glycosylation-dependent and -independent manner, respectively. Here, we found that glycosylation deficiency and ER stress induce a little or no effect on AGP secretion. Conversely, thapsigargin significantly suppressed AGP secretion in glycosylation-independent manner. These findings indicate that AGP secretion is regulated via thapsigargin-sensitive pathway that might be further controlled by the intracellular calcium concentrations.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Mutação , Orosomucoide/genética , Tapsigargina/farmacologia , Animais , Cálcio/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Camundongos Endogâmicos ICR , Orosomucoide/metabolismo , Tunicamicina/farmacologia
8.
Int J Clin Oncol ; 25(3): 486-494, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31564004

RESUMO

BACKGROUND: Before the androgen target therapy era, flutamide was widely used for castration-resistant prostate cancer in Japan. Enzalutamide is currently the recommended treatment; however, the efficacy and safety of enzalutamide and flutamide after combined androgen blockade therapy with bicalutamide, has not been compared. METHODS: Patients with castration-resistant prostate cancer who received combined androgen blockade therapy with bicalutamide were randomly assigned to receive either enzalutamide or flutamide. The primary endpoint for efficacy was the 3-month prostate-specific antigen response rate. This trial is registered with ClinicalTrials.gov (NCT02346578) and the University hospital Medical Information Network (UMIN000016301). RESULTS: Overall, 103 patients were enrolled. The 3- (80.8% vs. 35.3%; p < 0.001) and 6-month (73.1% vs. 31.4%; p < 0.001) prostate-specific antigen response rates were higher in the enzalutamide than in the flutamide group. The 3-month disease progression rates (radiographic or prostate-specific antigen progression) were 6.4% and 38.8% in the enzalutamide and flutamide groups, respectively [hazard ratio (HR): 0.16; 95% confidence interval (CI): 0.05-0.47; p < 0.001]; the 6-month rates were 11.4% and 51.1%, respectively (HR 0.22; 95% CI 0.09-0.50; p < 0.001). Enzalutamide provided superior prostate-specific antigen progression-free survival compared with flutamide (HR 0.29; 95% CI 0.15-0.54; p < 0.001). Median time to prostate-specific antigen progression-free survival was not reached and was 6.6 months in the enzalutamide and flutamide groups, respectively. CONCLUSIONS: As an alternative anti-androgen therapy in patients with castration-resistant prostate cancer who fail bicalutamide-combined androgen blockade therapy, enzalutamide provides superior clinical outcomes compared with flutamide. Enzalutamide should be preferred over flutamide in these patients.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Anilidas/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Benzamidas , Flutamida/administração & dosagem , Humanos , Calicreínas/sangue , Masculino , Pessoa de Meia-Idade , Nitrilas/administração & dosagem , Feniltioidantoína/administração & dosagem , Feniltioidantoína/análogos & derivados , Intervalo Livre de Progressão , Modelos de Riscos Proporcionais , Antígeno Prostático Específico/sangue , Neoplasias de Próstata Resistentes à Castração/mortalidade , Compostos de Tosil/administração & dosagem , Resultado do Tratamento
9.
Immunol Invest ; 48(5): 441-450, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30569777

RESUMO

Anti-TNF antibodies are major therapeutics for rheumatoid arthritis and have been approved for marketing in many countries. Antibody-dependent cellular cytotoxicity (ADCC) is considered to be a potential mechanism of action of anti-TNF antibodies, since some anti-TNF antibodies have been confirmed to induce cytotoxic effects on TNF-producing cells via ADCC and complement-dependent cytotoxicity (CDC) in in vitro experiments. In this study, we established a new stable effector cell line expressing human FcγRIIIa, CD16:KHYG-1, and compared the performance of this cell line with that of peripheral blood mononuclear cells (PBMCs) in ADCC assays against CHO-derived target cells expressing protease-sensitive pro-TNF. Although an inhibitory effect of soluble TNF released from pro-TNF expressing cells on ADCC activity was seen, clear dose-responsive ADCC activities were observed even in the presence or absence of TNF-α converting enzyme (TACE) inhibitor. However, significant differences in the ADCC activities in the presence or absence of TACE inhibitor were only noted when CD16:KHYG-1 cells were used as the effector cells. Our findings indicate that soluble TNF may influence ADCC activity of anti-TNF antibody. Moreover, the fact that the influence was able to be detected only in the case using stable effector cell also suggests that the stable effector cell established this time enable highly accurate ADCC measurement.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Infliximab/uso terapêutico , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Proteína ADAM17/metabolismo , Animais , Citotoxicidade Celular Dependente de Anticorpos , Células CHO , Linhagem Celular , Cricetulus , Dipeptídeos/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Infliximab/farmacologia , Células Matadoras Naturais/patologia , Receptores de IgG/genética , Receptores de IgG/metabolismo , Transgenes/genética , Fator de Necrose Tumoral alfa/imunologia
10.
J Biol Chem ; 292(44): 18052-18061, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28808055

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of protein synthesis and potential target for modifying cellular metabolism in various conditions, including cancer and aging. mTORC1 activity is tightly regulated by the availability of extracellular amino acids, and previous studies have revealed that amino acids in the extracellular fluid are transported to the lysosomal lumen. There, amino acids induce recruitment of cytoplasmic mTORC1 to the lysosome by the Rag GTPases, followed by mTORC1 activation by the small GTPase Ras homolog enriched in brain (Rheb). However, how the extracellular amino acids reach the lysosomal lumen and activate mTORC1 remains unclear. Here, we show that amino acid uptake by dynamin-dependent endocytosis plays a critical role in mTORC1 activation. We found that mTORC1 is inactivated when endocytosis is inhibited by overexpression of a dominant-negative form of dynamin 2 or by pharmacological inhibition of dynamin or clathrin. Consistently, the recruitment of mTORC1 to the lysosome was suppressed by the dynamin inhibition. The activity and lysosomal recruitment of mTORC1 were rescued by increasing intracellular amino acids via cycloheximide exposure or by Rag overexpression, indicating that amino acid deprivation is the main cause of mTORC1 inactivation via the dynamin inhibition. We further show that endocytosis inhibition does not induce autophagy even though mTORC1 inactivation is known to strongly induce autophagy. These findings open new perspectives for the use of endocytosis inhibitors as potential agents that can effectively inhibit nutrient utilization and shut down the upstream signals that activate mTORC1.


Assuntos
Aminoácidos/metabolismo , Dinamina II/metabolismo , Endocitose , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Substituição de Aminoácidos , Autofagia/efeitos dos fármacos , Biomarcadores/metabolismo , Clatrina/antagonistas & inibidores , Clatrina/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Dinamina II/antagonistas & inibidores , Dinamina II/genética , Endocitose/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/agonistas , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Moduladores de Transporte de Membrana/farmacologia , Microscopia de Fluorescência , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação , Transporte Proteico/efeitos dos fármacos , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteínas Recombinantes de Fusão/metabolismo
12.
Virology ; 590: 109943, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38103268

RESUMO

The Ibaraki virus (IBAV) causes Ibaraki disease in cattle. Our previous studies have shown that IBAV uses macropinocytosis to enter the host cell and exit from the endosome to the cytosol in response to endosomal acidification. To further explore the mechanism of IBAV infection and replication, we examined the effect of inhibitors of mitochondrial oxidative phosphorylation, carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and antimycin A, on IBAV propagation. These inhibitors significantly suppressed IBAV propagation, with reduced cellular ATP levels resulting from suppression of ATP synthesis. Furthermore, we identified AMP-activated protein kinase (AMPK), which is activated by CCCP or antimycin A, as a key signaling molecule in IBAV suppression. We also observed that IBAV infection induces ATP depletion and increases AMPK activity. Our findings suggest that AMPK is a potential target in Ibaraki disease.


Assuntos
Proteínas Quinases Ativadas por AMP , Mitocôndrias , Animais , Bovinos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Antimicina A/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
14.
J Vet Med Sci ; 85(7): 772-780, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37225457

RESUMO

Mechanistic/mammalian target of rapamycin complex 1 (mTORC1) is a serine/threonine kinase that plays a major role in cell metabolism. Although mTORC1 inhibitors are known to exert immunosuppressive effects, their effects on immune cells are not fully understood. In the present study, we examined the involvement of mTORC1 in the differentiation and functions of macrophages using THP-1 cells, which are derived from human monocytic leukemia and differentiate into macrophage-like cells upon treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA). We also examined the effects of two mTOR inhibitors, Torin 1 and rapamycin, on TPA-stimulated THP-1 cells. Although mTORC1 activation was observed upon TPA stimulation, mTOR inhibitors did not affect TPA-induced morphological changes or expression of the general macrophage marker, CD11b. In contrast, phagocytosis and fluid endocytosis were significantly impaired by the mTOR inhibitors. Endocytosis suppression was observed when mTOR inhibitors were added during differentiation, but not before or after differentiation, suggesting that endocytosis suppression altered the direction of differentiation. Furthermore, mTOR inhibitors altered the expression of M1/M2 polarization markers. These results suggest that the immunosuppressive effects of mTOR inhibitors may involve the suppression of macrophage endocytosis caused by abnormal cell differentiation.


Assuntos
Inibidores de MTOR , Serina-Treonina Quinases TOR , Humanos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Células THP-1 , Diferenciação Celular , Fagocitose , Mamíferos
15.
J Vet Med Sci ; 85(8): 820-827, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37407446

RESUMO

Canine lymphoma is the most common cancer in dogs and has a poor prognosis. We recently found that the endocytosis inhibitor dynasore suppresses the viability of human cancer cell lines, especially hematopoietic cancers, by inducing apoptosis. In the present study, we examined the anticancer effects of dynasore on five previously established canine lymphoma cell lines (CLBL-1, Ema, Nody-1, CLC, and GL-1). Dynasore suppressed cell viability in these canine lymphoma cell lines more effectively than in human cancer cell lines. It also induced apoptosis in CLBL-1 and Ema cells but not in peripheral blood mononuclear cells in healthy dogs or in Madin-Darby canine kidney (MDCK) cells, suggesting that the ability of dynasore to induce apoptosis is cancer-specific. Furthermore, dynasore induced a DNA damage response in CLBL-1 and Ema cells, suggesting that it acts as a genotoxic agent in canine lymphoma cell lines. These findings suggest that endocytosis inhibitors may provide a new anticancer treatment for canine lymphoma.


Assuntos
Doenças do Cão , Linfoma , Animais , Cães , Humanos , Leucócitos Mononucleares/metabolismo , Linhagem Celular Tumoral , Linfoma/tratamento farmacológico , Linfoma/veterinária , Linfoma/genética , Apoptose , Endocitose , Doenças do Cão/genética
16.
J Gen Virol ; 93(Pt 9): 1930-1934, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22718568

RESUMO

In this study, the Japanese strain of type I feline infectious peritonitis virus (FIPV), C3663, was found to have a large deletion of 735 bp within the gene encoding the spike (S) protein, with a deduced loss of 245 aa of the N-terminal region of the S protein. This deletion is similar to that observed in porcine respiratory coronavirus (PRCoV) when compared to transmissible gastroenteritis virus, which correlates with reduced virulence. By analogy to PRCoV, we expected that the pathogenicity of C3663 may be attenuated in cats. However, two of four cats inoculated with C3663 died of FIP, and a third C3663-inoculated cat showed FIP lesions at 91 days after challenge. These results indicate that the 5'-terminal region of the S gene is not essential for the development of FIP.


Assuntos
Coronavirus Felino/genética , Coronavirus Felino/patogenicidade , Peritonite Infecciosa Felina/virologia , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Deleção de Sequência , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Motivos de Aminoácidos , Animais , Gatos , Coronavirus Felino/química , Coronavirus Felino/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Dados de Sequência Molecular , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/metabolismo , Virulência
17.
J Exp Biol ; 215(Pt 20): 3597-602, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22771751

RESUMO

Sequence analysis of a Triatoma dimidiata salivary gland cDNA library resulted in the identification of two transcripts (Td60 and Td101) homologous to triabin, an inhibitor of thrombin in Triatoma pallidipennis saliva. In the present study, a recombinant protein of Td60, designated dimiconin, was expressed in Escherichia coli and its activity was characterized. The resulting protein inhibited the intrinsic but not extrinsic blood coagulation pathway, suggesting that dimiconin is not a thrombin inhibitor. Measurement of the enzymatic activity of coagulation factors using chromogenic substrates revealed that dimiconin efficiently inhibited factor XIIa (FXIIa) activity in a dose-dependent manner. In addition, pre-incubation of dimiconin with FXII effectively inhibited FXIIa activity whereas dimiconin did not affect already activated FXIIa, indicating that dimiconin inhibits the activation of FXII but not the enzymatic activity of FXIIa. These results show that dimiconin is an inhibitor of the contact phase initiated by FXII activation in the blood coagulation cascade, which differs from the bioactivity of triabin.


Assuntos
Anticoagulantes , Coagulação Sanguínea/efeitos dos fármacos , Fator XIIa/antagonistas & inibidores , Proteínas de Insetos/metabolismo , Proteínas de Insetos/farmacologia , Triatoma/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Doença de Chagas/transmissão , Proteínas de Insetos/genética , Insetos Vetores/metabolismo , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Glândulas Salivares/metabolismo , Proteínas e Peptídeos Salivares/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Triatoma/genética
19.
Mitochondrial DNA B Resour ; 7(3): 569-570, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386957

RESUMO

The complete chloroplast genome sequence of a coastal plant, Euphorbia jolkinii Boiss. (Euphorbiaceae), was determined. The chloroplast genome was 162,854 bp in length, consisting of a large single copy region (90,726 bp), a small single copy region (18,422 bp), and two inverted repeats (26,853 bp). The chloroplast genome contained 115 genes, consisting of 80 unique protein-coding genes, 30 unique tRNA genes, four unique rRNA genes, and one pseudogene, rps16. GC content of the whole chloroplast genome was 35.6%. The phylogenetic analysis showed a close relationship between E. jolkinii and E. pekinensis Rupr. The sequence data would provide useful information to understand the evolutionary process of E. jolkinii.

20.
ACS Omega ; 7(39): 35245-35255, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36211038

RESUMO

A pyrene dimer (PYD) is synthesized by electrochemical oxidation via homocoupling of pyrene (PY) inside the pores of MgO-templated mesoporous carbons without any metal catalysts or organic solvents. The resulting MgO-C/PYD hybrids can be used as high-performance aqueous electrochemical capacitor electrodes due to the reversible redox property of PYD and large contact area between the hybridized PYD and conductive carbon surfaces, which enable rapid charge transfer at the large contact interface. In our previous study, PY was considered to polymerize through electrochemical oxidation, and activated carbon with the pore sizes of ∼4 nm was used as a porous carbon substrate. In this study, the MgO-templated carbons have the average pore sizes of 5, 10, and 30 nm, and their large mesopore volumes can accommodate a large amount of PYD for enhancing the capacitance. To develop high-performance electrochemical capacitors, the dependence of the capacitance enhancement and the capacitance retention on the amount of PY and the pore sizes of MgO-templated carbons are studied. It is found that mesopores are necessary for fast charging/discharging, but the capacitance retention and capacitance enhancement decrease with increasing the mesopore sizes and the amount of PY due to the decreased utilization ratio of PY.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA