Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Reprod Biomed Online ; 38(4): 579-587, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30777668

RESUMO

RESEARCH QUESTION: Telomeres are non-coding, repetitive DNA sequences (TTAGGG repeats) that play an important role in maintaining genome integrity. Unlike in somatic cells, telomere length in spermatozoa increases with male age and is considered as a molecular marker of sperm quality. The aetiology of failed fertilization following intracytoplasmic sperm injection (ICSI) is multifactorial; perhaps one of the reasons for this failure in these individuals is shortened sperm telomere length. This study therefore aimed to assess sperm telomere length in addition to DNA damage, lipid peroxidation and protamine deficiency in infertile men with previously failed/low fertilization post-ICSI. DESIGN: Semen samples were obtained from infertile men with previous failed/low fertilization rates (n = 10). Chromatin integrity (chromomycin A3 staining and TUNEL assay), lipid peroxidation (BODIPY probe) and telomere length (real-time PCR) for semen samples from these men were compared with samples obtained from fertile individuals (n = 10). RESULTS: The results showed significantly higher mean values for sperm DNA damage, lipid peroxidation and reduced telomere length in spermatozoa of infertile men with previous failed/low fertilization compared with fertile individuals (P < 0.05). CONCLUSIONS: Failed/low fertilization rates could be related to oxidative stress resulting in short telomere length, and also increased sperm chromatin damage and lipid peroxidation. From literature sources, shortened telomere length may lead to detachment of chromosomes from the nuclear membrane, the consequences of which are defects in the process of spermatogenesis, pronuclei formation, and delayed or arrested cell cycle post-ICSI.


Assuntos
Infertilidade Masculina/diagnóstico , Infertilidade Masculina/terapia , Injeções de Esperma Intracitoplásmicas , Espermatozoides/patologia , Encurtamento do Telômero , Adulto , Compostos de Boro , Núcleo Celular/metabolismo , Cromatina/metabolismo , Dano ao DNA , Fragmentação do DNA , Fertilização , Humanos , Leucócitos/citologia , Peroxidação de Lipídeos , Masculino , Oócitos/metabolismo , Estresse Oxidativo , Protaminas/metabolismo , Telômero/patologia
2.
Immunogenetics ; 68(1): 43-54, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26563334

RESUMO

Multiple sclerosis (MS) is one of the most prevalent autoimmune diseases, which involves the central nervous system. In this illness, Treg/Th17 cell imbalance causes the defect. Several studies revealed that T helper 17 (Th17) cells play a crucial role in pathogenesis, inflammation, and autoimmunity of several autoimmune diseases such as MS. In the present study, we assessed transcript levels of miR-27a and miR-214, in purified CD4+ T cells of MS patients, during relapsing and remitting phases in inducing differentiation of T naïve cells to Th17 cells. Forty RR-MS patient samples including those in relapsing (n=20) and remitting (n=20) phases were participated in this study. In addition, transcript levels of IL-17A, RORγt, IL-23R, Foxp3, and TGF-ß in purified CD4+ T cells of patients in relapsing and remitting phases of RRMS patients were compared to healthy controls. Expression levels of miR-27a and miR-214 were measured by RT-qPCR and compared to healthy control group (n=10). Data indicated upregulation of miR27a in relapsing phase of multiple sclerosis compared to remitting phase and healthy volunteers while miR-214 downregulated in relapsing phase of MS compared to remitting phase and healthy volunteers. In silico studies demonstrated pathways which miR-27a and miR-214 could effect on CD4+ T cell lineage fate including TGF-ß and mTOR signaling, respectively. Our data suggest that miR-27a may probably inhibit negative regulators of Th17 cell differentiation, thus promoting its differentiation while miR-214 has an adverse effect.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , MicroRNAs/fisiologia , Esclerose Múltipla Recidivante-Remitente/genética , Células Th17/citologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/genética , Regulação da Expressão Gênica , Humanos , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/imunologia , Valores de Referência , Transdução de Sinais/genética , Linfócitos T Reguladores/fisiologia , Células Th17/imunologia
3.
Mol Cell Biochem ; 420(1-2): 29-42, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27435855

RESUMO

Parkinson's disease (PD) can degenerate dopaminergic (DA) neurons in midbrain, substantia-nigra pars compacta. Alleviation of its symptoms and protection of normal neurons against degeneration are the main aspects of researches to establish novel therapeutic strategies. PPARγ as a member of PPARs have shown neuroprotection in a number of neurodegenerative disorders such as Alzheimer's disease and PD. Nuclear receptor related 1 protein (Nurr1) is, respectively, member of NR4A family and has received great attentions as potential target for development, maintenance, and survival of DA neurons. Based on neuroprotective effects of PPARγ and dual role of Nurr1 in anti-inflammatory pathways and development of DA neurons, we hypothesize that PPARγ and Nurr1 agonists alone and in combined form can be targets for neuroprotective therapeutic development for PD in vitro model. 1-Methyl-4-phenylpyridinium (MPP(+)) induced neurotoxicity in PC12 cells as an in vitro model for PD studies. Treatment/cotreatment with PPARγ and Nurr1 agonists 24 h prior to MPP(+) induction enhanced the viability of PC12 cell. The viability of PC12 cells was determined by MTS test. Mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) were detected by flow cytometry. In addition, the relative expression of four genes including TH (the marker of DA neurons), Ephrin A1, Nurr1, and Ferritin light chain were assessed by RT-qPCR. In the MPP(+)-pretreated PC12 cells, PPARγ and Nurr1 agonists and their combined form resulted in a decrease in the cell death rate. Moreover, production of intracellular ROS and MMP modulated by MPP(+) was decreased by PPARγ and Nurr1 agonists' treatment alone and in the combined form.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , PPAR gama , Espécies Reativas de Oxigênio/metabolismo , Animais , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/agonistas , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Células PC12 , PPAR gama/agonistas , PPAR gama/metabolismo , Ratos
4.
Reprod Sci ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622476

RESUMO

Advanced glycation end products (AGEs) can disrupt antioxidant system and steroidogenesis, resulting in detrimental effects on assisted reproductive technology (ART) outcomes. This study aimed to investigate the association of AGEs in follicular fluid (FF) with morphokinetic parameters of embryos and ART outcomes. Fifty women undergoing ART treatment were studied. AGEs, glucose, 25(OH) vitamin D, malondialdehyde (MDA) levels and catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX) activities were evaluated in FF. The expression of 3ßHSD, CYP11A1, and CYP19A1 genes were analyzed in granulosa cells (GCs) by qRT-PCR technique. Morphokinetic parameters were evaluated using time-lapse technology. The FF level of AGEs was reversely associated with CAT, SOD, and GPX activities, and total and mature oocytes number, blastocyst formation rate, and high-grade embryos number, while it showed positive correlations with the FF MDA levels, the expression of steroidogenesis genes, number of immature oocytes, morphokinetic parameters, and number of low-grade embryos. Furthermore, the level of vitamin D in FF had an inverse association with AGEs and positive correlations with ART outcomes and morphokinetic parameters. Comparison between the those with positive and negative biochemical pregnancy showed no significant differences in terms of FF factors and just the expression of 3ßHSD, CYP11A1, and CYP19A1 genes were higher in pregnant women (p < 0.05). AGEs could delay blastomere division and lead to an increase in the number of low-quality embryos, while vitamin D have an adverse effect on AGEs and a protective function against AGEs negative effects.

5.
Sci Rep ; 14(1): 6180, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486041

RESUMO

Long non-coding RNA (lncRNA) regulates many physiological processes by acting as competitive endogenous RNA (ceRNA). The dysregulation of lncRNA X-inactive specific transcript (XIST) has been shown in various human disorders. However, its role in the pathogenesis of polycystic ovary syndrome (PCOS) is yet to be explored. This study aimed to explore the underlying mechanism of XIST in the pathogenesis of PCOS, specifically through dataset functional analysis. GEO PCOS datasets including RNA-seq, microarray, and miRNA-seq in granulosa cells (GCs) and blood, were examined and comprehensively analyzed. Enrichment analysis, ROC curve constructions, lncRNA-miRNA-mRNA interaction network analyses, and qRT-PCR validation were performed followed by a series of drug signature screenings. Our results revealed significant dysregulation in the expression of 1131 mRNAs, 30 miRNAs, and XIST in GCs of PCOS patients compared to healthy individuals. Of the120 XIST-correlated upregulated genes, 25 were enriched in inflammation-related pathways. Additionally, 5 miRNAs were identified as negative regulators of XIST-correlated genes. Accordingly, a ceRNA network containing XIST-miRNAs-mRNAs interactions was constructed. Furthermore, 6 genes, including AQP9, ETS2, PLAU, PLEK, SOCS3, and TNFRSF1B served as both GCs and blood-based biomarkers. By analyzing the number of interactions among XIST, miRNAs, and mRNAs, we pinpointed ETS2 as the pivotal gene within the ceRNA network. Our findings reveal a novel XIST- hsa-miR-146a-5p, hsa-miR-144-3p, and hsa-miR-1271-5p-ETS2 axis that comprehensively elucidates the XIST-associated mechanism underlying PCOS onset. qRT-PCR analysis further confirmed the, overexpression of both XIST and ETS2 . Furthermore, our results demonstrated that XIST and ETS2 were correlated with some assisted reproductive technologies outcomes. Finally, we identified two novel compounds including, methotrexate/folate and threonine using drug-gene interaction databases for PCOS management. These findings provide novel insights into the molecular etiology, diagnosis, and potential therapeutic interventions for PCOS.


Assuntos
MicroRNAs , Síndrome do Ovário Policístico , RNA Longo não Codificante , Feminino , Humanos , MicroRNAs/genética , Síndrome do Ovário Policístico/genética , RNA Endógeno Competitivo , RNA Longo não Codificante/genética , Transcriptoma
6.
Int J Fertil Steril ; 14(1): 51-56, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32112636

RESUMO

BACKGROUND: Telomeres are particular sequences of DNA located at the end of the eukaryotic chromosomes that are essential for genome integrity. Telomere length in spermatozoa differs among males, as well as spermatozoa. Also, decreased telomere length in spermatozoa of infertile men is associated with the reduction of fertility potential and embryo quality. Density gradient centrifugation (DGC) and swim-up are useful techniques for separation of spermatozoa with longer telomeres. Also, the selection of sperm based on surface negative electric charge or "Zeta potential", can separate high percentage of spermatozoa with intact chromatin compared to DGC alone, and also the combination of DGC-Zeta can improve clinical outcomes of infertile men candidate for intracytoplasmic sperm injection (ICSI). Therefore, we compared sperm telomere length and DNA fragmentation between two sperm preparation procedures, namely DGC and zeta potential. MATERIALS AND METHODS: In this experimental study, we assessed sperm telomere length and DNA fragmentation by quantitative real-time polymerase chain reaction (PCR) and TUNEL assay methods, respectively. The spermatozoa were obtained from infertile men with normozoospermia between September 2017 and December 2017 and prepared either by DGC or zeta potential methods. Sperm telomere length was expressed as relative and absolute units. RESULTS: Compared with washed semen samples or control, no significant (P>0.05) difference was observed in the mean relative or absolute sperm telomere length when the two methods DGC or zeta potential were compared. However, the mean percentage of DNA fragmentation was significantly (P<0.05) lower in spermatozoa prepared by DGC or zeta potential methods than spermatozoa obtained from control samples. CONCLUSION: This is the first study that compared the effect of DGC and zeta potential as the sperm preparation methods on sperm telomere length. It seems that both methods can select sperm population with high DNA integrity and the same sperm telomeres length.

7.
Sci Rep ; 9(1): 4336, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867501

RESUMO

Varicocele, defined as enlarged varicose veins in the scrotum, is the most common identifiable cause of male infertility. There are significant correlations between oxidative stress and varicocele-related infertility due to testicular hyperthermia, which can result in low sperm function. In addition, recent excessive oxidative stress can affect sperm telomere length and integrity of sperm DNA. Therefore, we assessed sperm telomere length as a potential marker of paternal genome integrity and leukocyte telomere length as an internal control (real-time PCR), along with sperm chromatin status (TUNEL and chromomycin A3 assay), and lipid peroxidation (Bodipy probe) in 18 infertile men with grade II or III varicocele, and 20 fertile men. Means of sperm parameters, sperm and leukocyte telomere length were significantly lower, while means of sperm DNA fragmentation, protamine deficiency, and lipid peroxidation were significantly higher in infertile men with varicocele compared to fertile men. Therefore, shortened telomere length in sperm and leukocytes is likely associated with increased oxidative stress related to the state of varicocele, which also accounts for increase in sperm DNA fragmentation. Thus, assessment of leukocyte telomere length could be taken as an indicator of antioxidant capacity in an individual, which also affects sperm function.


Assuntos
Espermatozoides/ultraestrutura , Encurtamento do Telômero , Varicocele/genética , Adulto , DNA/metabolismo , Humanos , Infertilidade Masculina/genética , Peroxidação de Lipídeos , Masculino , Protaminas/metabolismo , Espermatozoides/metabolismo
8.
Int J Reprod Biomed ; 14(1): 15-22, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27141544

RESUMO

BACKGROUND: KLC3 protein as a member of the kinesin light-chain protein family plays an important role in spermatogenesis, during formation of mitochondrial sheath in the mid piece of the sperm tail. OBJECTIVE: This study for the first time aims to compare the expression of the KLC3 gene between fertile and infertile individuals. MATERIALS AND METHODS: Semen samples were collected from 19 fertile individuals who were selected from embryo-donor volunteers and 57 infertile individuals who had abnormal sperm parameters according to world health organization criteria. Sperm parameters using computer assisted sperm analysis and the quantitative KLC3-gene expression using the real-time PCR method were measured. RESULTS: Our results revealed a significant correlations between sperm concentration with relative expression of KLC3 only in infertile groups (r=0.45, p=0.00). A significant correlation was not found between KLC3 expression and sperm motility; however, the relative expression of KLC3 was significantly higher in asthenozoospermic compared to non-asthenozoospermic individuals. CONCLUSION: Low expression of KLC3 may result in improper function of midpiece, which has important function in sperm motility. The results of this study show that aberrant expression of KLC3 might be associated with phenomena like oligozoospermia and asthenozoospermia. This article is extracted from student's thesis.

9.
Pharmacol Rep ; 67(6): 1103-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26481528

RESUMO

BACKGROUND: Several evidences indicate stimulation of peroxisome proliferator activated receptor γ (PPARg), promotes neuronal differentiation. This study was conducted to testify the prominence of PPARγ during neural differentiation of human embryonic stem cells (hESCs). METHODS: PPARγ expression level was assessed during neural differentiation of hESCs. Meanwhile, the level of endogenous miRNAs, which could be engaged in regulation of PPARγ expression, was measured. Next, natural and synthetic components of PPARγ agonists and antagonist were implemented on neural progenitor formation during neural differentiation of hESCs. RESULTS: Data showed an increasing wave of PPARγ expression level when human neural progenitors (NPs) were formed upon retinoic acid treatment. Interestingly, there was no significant difference in the amount of PPARγ proteins during the differentiation of hESCs that is inconsistent with what we observed for RNA level. Our results indicated that miRNAs are not involved in the regulation of PPARγ expression, while proteasome-mediated degradation may to some degree be involved in this process. Among numerous treatments, PPARγ inactivation during NPs formation significantly decreased expression of NP markers. CONCLUSIONS: We conclude that a ground state of PPARγ activity is required for NP formation of hESCs during early neural differentiation. However, high expression and activity of PPARγ could not enhance the required neural differentiation, whereas the PPARγ inactivation could negatively influence NP formation from hESCs by antagonist.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Neurais/citologia , Neurogênese , PPAR gama/metabolismo , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Leupeptinas/farmacologia , MicroRNAs/fisiologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , PPAR gama/agonistas , PPAR gama/biossíntese , Complexo de Endopeptidases do Proteassoma/fisiologia , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA