Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nat Rev Mol Cell Biol ; 23(12): 836-852, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35918536

RESUMO

Polymerization of actin filaments against membranes produces force for numerous cellular processes, such as migration, morphogenesis, endocytosis, phagocytosis and organelle dynamics. Consequently, aberrant actin cytoskeleton dynamics are linked to various diseases, including cancer, as well as immunological and neurological disorders. Understanding how actin filaments generate forces in cells, how force production is regulated by the interplay between actin-binding proteins and how the actin-regulatory machinery responds to mechanical load are at the heart of many cellular, developmental and pathological processes. During the past few years, our understanding of the mechanisms controlling actin filament assembly and disassembly has evolved substantially. It has also become evident that the activities of key actin-binding proteins are not regulated solely by biochemical signalling pathways, as mechanical regulation is critical for these proteins. Indeed, the architecture and dynamics of the actin cytoskeleton are directly tuned by mechanical load. Here we discuss the general mechanisms by which key actin regulators, often in synergy with each other, control actin filament assembly, disassembly, and monomer recycling. By using an updated view of actin dynamics as a framework, we discuss how the mechanics and geometry of actin networks control actin-binding proteins, and how this translates into force production in endocytosis and mesenchymal cell migration.


Assuntos
Citoesqueleto de Actina , Actinas , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Movimento Celular , Endocitose
2.
EMBO J ; 42(9): e113008, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36939020

RESUMO

Activation of the Arp2/3 complex by VCA-motif-bearing actin nucleation-promoting factors results in the formation of "daughter" actin filaments branching off the sides of pre-existing "mother" filaments. Alternatively, when stimulated by SPIN90, Arp2/3 directly nucleates "linear" actin filaments. Uncovering the similarities and differences between these two mechanisms is fundamental to understanding how actin cytoskeleton dynamics are regulated. Here, analysis of individual filaments reveals that, unexpectedly, the VCA motifs of WASP, N-WASP, and WASH destabilize existing branches, as well as SPIN90-Arp2/3 at linear filament ends. Furthermore, branch stabilizer cortactin and destabilizer GMF each have a similar impact on SPIN90-activated Arp2/3. However, unlike branch junctions, SPIN90-Arp2/3 at the ends of linear filaments is not destabilized by piconewton forces and does not become less stable with time. It thus appears that linear and branched Arp2/3-generated filaments respond similarly to the regulatory proteins we have tested, albeit with some differences, but significantly differ in their responses to aging and mechanical stress. These kinetic differences likely reflect the small conformational differences recently reported between Arp2/3 in branch junctions and linear filaments and suggest that their turnover in cells may be differently regulated.


Assuntos
Citoesqueleto de Actina , Complexo 2-3 de Proteínas Relacionadas à Actina , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042781

RESUMO

The precise assembly and disassembly of actin filaments is required for several cellular processes, and their regulation has been scrutinized for decades. Twenty years ago, a handful of studies marked the advent of a new type of experiment to study actin dynamics: using optical microscopy to look at individual events, taking place on individual filaments in real time. Here, we summarize the main characteristics of this approach and how it has changed our ability to understand actin assembly dynamics. We also highlight some of its caveats and reflect on what we have learned over the past 20 years, leading us to propose a set of guidelines, which we hope will contribute to a better exploitation of this powerful tool.


Assuntos
Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Bioquímica , Biofísica , Citoesqueleto/química , Citoesqueleto/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Microscopia de Fluorescência , Temperatura
4.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074767

RESUMO

Profilin-1 (PFN1) plays important roles in modulating actin dynamics through binding both monomeric actin and proteins enriched with polyproline motifs. Mutations in PFN1 have been linked to the neurodegenerative disease amyotrophic lateral sclerosis (ALS). However, whether ALS-linked mutations affect PFN1 function has remained unclear. To address this question, we employed an unbiased proteomics analysis in mammalian cells to identify proteins that differentially interact with mutant and wild-type (WT) PFN1. These studies uncovered differential binding between two ALS-linked PFN1 variants, G118V and M114T, and select formin proteins. Furthermore, both variants augmented formin-mediated actin assembly relative to PFN1 WT. Molecular dynamics simulations revealed mutation-induced changes in the internal dynamic couplings within an alpha helix of PFN1 that directly contacts both actin and polyproline, as well as structural fluctuations within the actin- and polyproline-binding regions of PFN1. These data indicate that ALS-PFN1 variants have the potential for heightened flexibility in the context of the ternary actin-PFN1-polyproline complex during actin assembly. Conversely, PFN1 C71G was more severely destabilized than the other PFN1 variants, resulting in reduced protein expression in both transfected and ALS patient lymphoblast cell lines. Moreover, this variant exhibited loss-of-function phenotypes in the context of actin assembly. Perturbations in actin dynamics and assembly can therefore result from ALS-linked mutations in PFN1. However, ALS-PFN1 variants may dysregulate actin polymerization through different mechanisms that depend upon the solubility and stability of the mutant protein.


Assuntos
Actinas/metabolismo , Esclerose Lateral Amiotrófica/genética , Forminas/efeitos adversos , Polimerização , Profilinas/genética , Profilinas/metabolismo , Animais , Células HeLa , Humanos , Proteínas Mutantes/química , Mutação , Doenças Neurodegenerativas , Fenótipo , Profilinas/química , Conformação Proteica em alfa-Hélice , Deficiências na Proteostase
5.
EMBO Rep ; 22(2): e50965, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33393173

RESUMO

Proteins of the ADF/cofilin family play a central role in the disassembly of actin filaments, and their activity must be tightly regulated in cells. Recently, the oxidation of actin filaments by the enzyme MICAL1 was found to amplify the severing action of cofilin through unclear mechanisms. Using single filament experiments in vitro, we found that actin filament oxidation by MICAL1 increases, by several orders of magnitude, both cofilin binding and severing rates, explaining the dramatic synergy between oxidation and cofilin for filament disassembly. Remarkably, we found that actin oxidation bypasses the need for cofilin activation by dephosphorylation. Indeed, non-activated, phosphomimetic S3D-cofilin binds and severs oxidized actin filaments rapidly, in conditions where non-oxidized filaments are unaffected. Finally, tropomyosin Tpm1.8 loses its ability to protect filaments from cofilin severing activity when actin is oxidized by MICAL1. Together, our results show that MICAL1-induced oxidation of actin filaments suppresses their physiological protection from the action of cofilin. We propose that, in cells, direct post-translational modification of actin filaments by oxidation is a way to trigger their disassembly.


Assuntos
Fatores de Despolimerização de Actina , Cofilina 1 , Proteínas dos Microfilamentos , Oxigenases de Função Mista , Citoesqueleto de Actina , Actinas/genética , Cofilina 1/genética , Citoesqueleto
6.
Semin Cell Dev Biol ; 102: 65-72, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31862222

RESUMO

One of the best known features of actin filaments is their helical structure. A number of essential properties emerge from this molecular arrangement of actin subunits. Here, we give an overview of the mechanical and biochemical implications of filament helicity, at different scales. In particular, a number of recent studies have highlighted the role of filament helicity in the adaptation to and the generation of mechanical torsion, and in the modulation of the filament's interaction with very different actin-binding proteins (such as myosins, cross-linkers, formins, and cofilin). Helicity can thus be seen as a key factor for the regulation of actin assembly, and as a link between biochemical regulators and their mechanical context. In addition, actin filament helicity appears to play an essential role in the establishment of chirality at larger scales, up to the organismal scale. Altogether, helicity appears to be an essential feature contributing to the regulation of actin assembly dynamics, and to actin's ability to organize cells at a larger scale.


Assuntos
Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Animais , Humanos
7.
Biol Cell ; 113(11): 441-449, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34287982

RESUMO

BACKGROUND INFORMATION: Actin cytoskeleton contractility plays a critical role in morphogenetic processes by generating forces that are then transmitted to cell-cell and cell-ECM adhesion complexes. In turn, mechanical properties of the environment are sensed and transmitted to the cytoskeleton at cell adhesion sites, influencing cellular processes such as cell migration, differentiation and survival. Anchoring of the actomyosin cytoskeleton to adhesion sites is mediated by adaptor proteins such as talin or α-catenin that link F-actin to transmembrane cell adhesion receptors, thereby allowing mechanical coupling between the intracellular and extracellular compartments. Thus, a key issue is to be able to measure the forces generated by actomyosin and transmitted to the adhesion complexes. Approaches developed in cells and those probing single molecule mechanical properties of α-catenin molecules allowed to identify α-catenin, an F-actin binding protein which binds to the cadherin complexes as a major player in cadherin-based mechanotransduction. However, it is still very difficult to bridge intercellular forces measured at cellular levels and those measured at the single-molecule level. RESULTS: Here, we applied an intermediate approach allowing reconstruction of the actomyosin-α-catenin complex in acellular conditions to probe directly the transmitted forces. For this, we combined micropatterning of purified α-catenin and spontaneous actomyosin network assembly in the presence of G-actin and Myosin II with microforce sensor arrays used so far to measure cell-generated forces. CONCLUSIONS: Using this method, we show that self-organizing actomyosin bundles bound to micrometric α-catenin patches can apply near-nano-Newton forces. SIGNIFICANCE: Our results pave the way for future studies on molecular/cellular mechanotransduction and mechanosensing.


Assuntos
Actomiosina , Mecanotransdução Celular , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Caderinas , Adesão Celular , alfa Catenina/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(7): 2595-2602, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30692249

RESUMO

Proteins of the actin depolymerizing factor (ADF)/cofilin family are the central regulators of actin filament disassembly. A key function of ADF/cofilin is to sever actin filaments. However, how it does so in a physiological context, where filaments are interconnected and under mechanical stress, remains unclear. Here, we monitor and quantify the action of ADF/cofilin in different mechanical situations by using single-molecule, single-filament, and filament network techniques, coupled to microfluidics. We find that local curvature favors severing, while tension surprisingly has no effect on cofilin binding and weakly enhances severing. Remarkably, we observe that filament segments that are held between two anchoring points, thereby constraining their twist, experience a mechanical torque upon cofilin binding. We find that this ADF/cofilin-induced torque does not hinder ADF/cofilin binding, but dramatically enhances severing. A simple model, which faithfully recapitulates our experimental observations, indicates that the ADF/cofilin-induced torque increases the severing rate constant 100-fold. A consequence of this mechanism, which we verify experimentally, is that cross-linked filament networks are severed by cofilin far more efficiently than nonconnected filaments. We propose that this mechanochemical mechanism is critical to boost ADF/cofilin's ability to sever highly connected filament networks in cells.


Assuntos
Citoesqueleto de Actina/fisiologia , Cofilina 1/fisiologia , Destrina/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Fenômenos Biomecânicos , Cofilina 1/metabolismo , Destrina/metabolismo , Humanos , Cinética , Ligação Proteica , Coelhos , Proteínas Recombinantes/metabolismo
9.
Nano Lett ; 20(1): 22-32, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31797667

RESUMO

Formins are one of the central players in the assembly of most actin networks in cells. The sensitivity of these processive molecular machines to mechanical tension is now well established. However, how the activity of formins is affected by geometrical constraints related to network architecture, such as filament cross-linking and formin spatial confinement, remains largely unknown. Combining microfluidics and micropatterning, we reconstituted in vitro mDia1 formin-elongated filament bundles induced by fascin, with different geometrical constraints on the formins, and measured the impact of these constraints on formin elongation rate and processivity. When filaments are not bundled, the anchoring details of formins have only a mild impact on their processivity and do not affect their elongation rate. When formins are unanchored, we show that filament bundling by fascin reduces both their elongation rate and their processivity. Strikingly, when filaments elongated by surface-anchored formins are cross-linked together, formin elongation rate immediately decreases and processivity is reduced up to 24-fold depending on the cumulative impact of formin rotational and translational freedom. Our results reveal an unexpected crosstalk between the constraints at the filament and the formin levels. We anticipate that in cells the molecular details of formin anchoring to the plasma membrane strongly modulate formin activity at actin filament barbed ends.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Forminas/metabolismo , Citoesqueleto de Actina/química , Animais , Membrana Celular/química , Citoesqueleto/química , Forminas/química , Humanos
10.
J Muscle Res Cell Motil ; 41(1): 175-188, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31749040

RESUMO

The regulated assembly of actin filaments is essential in nearly all cell types. Studying actin assembly dynamics can pose many technical challenges. A number of these challenges can be overcome by using microfluidics to observe and manipulate single actin filaments under an optical microscope. In particular, microfluidics can be tremendously useful for applying different mechanical stresses to actin filaments and determining how the physical context of the filaments affects their regulation by biochemical factors. In this review, we summarize the main features of microfluidics for the study of actin assembly dynamics, and we highlight some recent developments that have emerged from the combination of microfluidics and other techniques. We use two case studies to illustrate our points: the rapid assembly of actin filaments by formins and the disassembly of filaments by actin depolymerizing factor (ADF)/cofilin. Both of these protein families play important roles in cells. They regulate actin assembly through complex molecular mechanisms that are sensitive to the filaments' mechanical context, with multiple activities that need to be quantified separately. Microfluidics-based experiments have been extremely useful for gaining insight into the regulatory actions of these two protein families.


Assuntos
Citoesqueleto de Actina/metabolismo , Fenômenos Biomecânicos/fisiologia , Microfluídica/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA