Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Inorg Chem ; 61(19): 7631-7641, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35507007

RESUMO

The use of metal-binding pharmacophores (MBPs) in fragment-based drug discovery has proven effective for targeted metalloenzyme drug development. However, MBPs can still suffer from pharmacokinetic liabilities. Bioisostere replacement is an effective strategy utilized by medicinal chemists to navigate these issues during the drug development process. The quinoline pharmacophore and its bioisosteres, such as quinazoline, are important building blocks in the design of new therapeutics. More relevant to metalloenzyme inhibition, 8-hydroxyquinoline (8-HQ) and its derivatives can serve as MBPs for metalloenzyme inhibition. In this report, 8-HQ isosteres are designed and the coordination chemistry of the resulting metal-binding isosteres (MBIs) is explored using a bioinorganic model complex. In addition, the physicochemical properties and metalloenzyme inhibition activity of these MBIs were investigated to establish drug-like profiles. This report provides a new group of 8-HQ-derived MBIs that can serve as novel scaffolds for metalloenzyme inhibitor development with tunable, and potentially improved, physicochemical properties.


Assuntos
Metaloproteínas , Oxiquinolina , Quelantes , Descoberta de Drogas , Metaloproteínas/química , Oxiquinolina/farmacologia
2.
Sci Adv ; 9(43): eadj2314, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889964

RESUMO

The generation of attractive scaffolds for drug discovery efforts requires the expeditious synthesis of diverse analogues from readily available building blocks. This endeavor necessitates a trade-off between diversity and ease of access and is further complicated by uncertainty about the synthesizability and pharmacokinetic properties of the resulting compounds. Here, we document a platform that leverages photocatalytic N-heterocycle synthesis, high-throughput experimentation, automated purification, and physicochemical assays on 1152 discrete reactions. Together, the data generated allow rational predictions of the synthesizability of stereochemically diverse C-substituted N-saturated heterocycles with deep learning and reveal unexpected trends on the relationship between structure and properties. This study exemplifies how organic chemists can exploit state-of-the-art technologies to markedly increase throughput and confidence in the preparation of drug-like molecules.


Assuntos
Descoberta de Drogas , Descoberta de Drogas/métodos , Farmacocinética , Ensaios de Triagem em Larga Escala , Técnicas de Química Sintética
3.
Chem Sci ; 13(7): 2128-2136, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35308862

RESUMO

Metalloenzyme inhibitors typically share a common need to possess a metal-binding pharmacophore (MBP) for binding the active site metal ions. However, MBPs can suffer from physicochemical liabilities, impeding the pharmacological properties and drug-likeliness of inhibitors. To circumvent this, problematic features of the MBP can be identified and exchanged with isosteric replacements. Herein, the carboxylic and hydroxyl group of the salicylic acid MBP were replaced and a total of 27 salicylate metal-binding isosteres (MBIs) synthesized. Of these 27 MBIs, at least 12 represent previously unreported compounds, and the metal-binding abilities of >20 of the MBIs have not been previously reported. These salicylate MBIs were examined for their metal-binding features in model complexes, physicochemical properties, and biological activity. It was observed that salicylate MBIs can demonstrate a range of attractive physicochemical properties and bind to the metal in a variety of expected and unexpected binding modes. The biological activity of these novel MBIs was evaluated by measuring inhibition against two Zn2+-dependent metalloenzymes, human glyoxalase 1 (GLO1) and matrix metalloproteinase 3 (MMP-3), as well as a dinuclear Mn2+-dependent metalloenzyme, influenza H1N1 N-terminal endonuclease (PAN). It was observed that salicylate MBIs could maintain or improve enzyme inhibition and selectivity. To probe salicylate MBIs as fragments for fragment-based drug discovery (FBDD), an MBI that showed good inhibitory activity against GLO1 was derivatized and a rudimentary structure-activity relationship was developed. The resulting elaborated fragments showed GLO1 inhibition with low micromolar activity.

4.
Chem Sci ; 9(23): 5191-5196, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29997873

RESUMO

We report the facile formation of trifluoroborate-iminiums (TIMs) from potassium acyltrifluoroborates (KATs) and the transformation of TIMs to α-aminotrifluoroborates by reduction or Grignard additions. Conditions for the hydrolysis of α-aminotrifluoroborates to α-aminoboronic acids, which are important biologically active compounds, were established. This new methodology allows access to sterically demanding α-aminoboronic acids that are not easily prepared with currently available methods. This work also introduces TIMs, that can be easily prepared and handled, as a new category of functional groups that serve as precursors to valuable organic compounds.

5.
Org Lett ; 20(13): 4044-4047, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29938515

RESUMO

The cross-coupling of α-aminoalkyltrifluoroborates and Grignard reagents to form N, N-substituted α-tertiary amines (ATAs) is reported. Key to the success of this reaction is the unexpected oxidation of the α-aminoalkyltrifluoroborate to the corresponding iminium cation by commercially available Barluenga's reagent. Various Grignard reagents added smoothly, enabling the synthesis of a variety of ATAs, which are of high value for medicinal chemistry and drug development. Many of the reported examples are not accessible by the established methods.

6.
Org Lett ; 19(17): 4696-4699, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28813158

RESUMO

Photocatalytic coupling of aldehydes and silicon amine protocol (SLAP) reagents enables the simple, scalable synthesis of substituted morpholines, oxazepanes, thiomorpholines, and thiazepanes under continuous flow conditions. Key to the success of this process is the combination of an inexpensive organic photocatalyst (TPP) and a Lewis acid additive, which form an amine radical cation that is easily reduced to complete the catalytic cycle. Di- and trisubstituted SLAP reagents are formed in one step by an iron-catalyzed aminoetherification of olefins.

7.
Org Lett ; 19(7): 1910-1913, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28339212

RESUMO

The nickel-catalyzed reduction of secondary and tertiary amides to give amine products is reported. The transformation is tolerant of extensive variation with respect to the amide substrate, proceeds in the presence of esters and epimerizable stereocenters, and can be used to achieve the reduction of lactams. Moreover, this methodology provides a simple tactic for accessing medicinally relevant α-deuterated amines.


Assuntos
Amidas/química , Aminas , Catálise , Estrutura Molecular , Níquel
8.
Org Lett ; 18(8): 1713-5, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27026179

RESUMO

The combination of aldehydes with newly designed HARP (halogen amine radical protocol) reagents gives access to α-substituted tetrahydronaphthyridines. By using different HARP reagents, various regioisomeric structures can be prepared in a single operation. These products, which are of high value in medicinal chemistry, are formed in a predictable manner via a formal Pictet-Spengler reaction of electron-poor pyridines that would not participate in the corresponding polar reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA