Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Transl Med ; 20(1): 486, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284352

RESUMO

BACKGROUND: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating condition that can lead to severe impairment of physical, psychological, cognitive, social, and occupational functions. The cause of ME/CFS remains incompletely understood. There is no clinical diagnostic test for ME/CFS. Although many therapies have been used off-label to manage symptoms of ME/CFS, there are limited, if any, specific therapies or cure for ME/CFS. In this study, we investigated the expression of genes specific to key immune functions, and viral infection status in ME/CFS patients with an aim of identifying biomarkers for characterization and/or treatment of the disease. METHODS: In 2021, one-hundred and sixty-six (166) patients diagnosed with ME/CFS and 83 healthy controls in the US participated in this study via a social media-based application (app). The patients and heathy volunteers consented to the study and provided self-collected finger-stick blood and first morning void urine samples from home. RNA from the fingerstick blood was tested using DxTerity's 51-gene autoimmune RNA expression panel (AIP). In addition, DNA from the same fingerstick blood sample was extracted to detect viral load of 4 known ME/CFS associated viruses (HHV6, HHV7, CMV and EBV) using a real-time PCR method. RESULTS: Among the 166 ME/CFS participants in the study, approximately half (49%) of the ME/CFS patients reported being house-bound or bedridden due to severe symptoms of the disease. From the AIP testing, ME/CFS patients with severe, bedridden conditions displayed significant increases in gene expression of IKZF2, IKZF3, HSPA8, BACH2, ABCE1 and CD3D, as compared to patients with mild to moderate disease conditions. These six aforementioned genes were further upregulated in the 22 bedridden participants who suffer not only from ME/CFS but also from other autoimmune diseases. These genes are involved in T cell, B cell and autoimmunity functions. Furthermore, IKZF3 (Aiolos) and IKZF2 (Helios), and BACH2 have been implicated in other autoimmune diseases such as systemic lupus erythematosus (SLE) and Rheumatoid Arthritis (RA). Among the 240 participants tested with the viral assays, 9 samples showed positive results (including 1 EBV positive and 8 HHV6 positives). CONCLUSIONS: Our study indicates that gene expression biomarkers may be used in identifying or differentiating subsets of ME/CFS patients having different levels of disease severity. These gene targets may also represent opportunities for new therapeutic modalities for the treatment of ME/CFS. The use of social media engaged patient recruitment and at-home sample collection represents a novel approach for conducting clinical research which saves cost, time and eliminates travel for office visits.


Assuntos
Doenças Autoimunes , Síndrome de Fadiga Crônica , Humanos , Síndrome de Fadiga Crônica/diagnóstico , Perfilação da Expressão Gênica , Doenças Autoimunes/genética , Biomarcadores , RNA , Fatores de Transcrição de Zíper de Leucina Básica/genética
2.
Int J Radiat Biol ; 96(1): 57-66, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30507310

RESUMO

PURPOSE: We introduce and evaluate a high throughput biodosimetry test system (REDI-Dx) suitable for testing of thousands of potential radiation victims following a mass scale nuclear event caused by detonation of a nuclear device or a nuclear accident, as part of an overall strategy for effective medical management of the crisis. MATERIALS AND METHODS: The performance of a high throughput biodosimetry test was evaluated by collecting samples of both non-irradiated presumed healthy donors as well as irradiated subjects collected as part of either cancer treatment regimens or banked from previous studies. The test measures the gene expression of a set of radiation responsive genes based on the DxDirect® genomic platform. The potential diagnostic accuracy of REDI-Dx was evaluated as a predictor of actual dose of radiation. While the REDI-Dx test has been calibrated to provide a quantitative measure of actual absorbed dose, we compared the performance of the REDI-Dx test (sensitivity and specificity) as a qualitative result at the most commonly applied thresholds 2.0 Gy and 6.0 Gy. RESULTS: The test demonstrated high specificity and lack of effect of medical conditions. Using receiver operating characteristic (ROC) curve analysis, REDI-Dx was shown to be a good predictor of actual dose for determining treatment category based on either 2.0 or 6.0 Gy, with a 98.5% sensitivity and 90% specificity for 2.0 Gy, and 92% sensitivity and 84% specificity for 6.0 Gy. Results were reproducible between clinical laboratories with an SD of 0.2 Gy for samples ≤2.0 Gy and a CV of 10.3% for samples from 2.0 to 10.0 Gy. CONCLUSIONS: Use of a biodosimetry test, like REDI-Dx test system would provide valuable information that would improve the ability to assign patients to the correct treatment category when combined with currently available biodosimetry tools, as compared to the use of existing tools alone. The REDI-Dx biodosimetry test system is for investigational use only in the U.S.A. The performance characteristics of this product have not been established.


Assuntos
Seleção de Pacientes , Lesões por Radiação/terapia , Liberação Nociva de Radioativos , Relação Dose-Resposta à Radiação , Humanos , Linfócitos/efeitos da radiação , Lesões por Radiação/complicações , Lesões por Radiação/etiologia , Radiometria , Vômito/complicações
3.
Nucleic Acids Res ; 31(1): 383-7, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12520028

RESUMO

The Conserved Domain Database (CDD) is now indexed as a separate database within the Entrez system and linked to other Entrez databases such as MEDLINE(R). This allows users to search for domain types by name, for example, or to view the domain architecture of any protein in Entrez's sequence database. CDD can be accessed on the WorldWideWeb at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=cdd. Users may also employ the CD-Search service to identify conserved domains in new sequences, at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi. CD-Search results, and pre-computed links from Entrez's protein database, are calculated using the RPS-BLAST algorithm and Position Specific Score Matrices (PSSMs) derived from CDD alignments. CD-Searches are also run by default for protein-protein queries submitted to BLAST(R) at http://www.ncbi.nlm.nih.gov/BLAST. CDD mirrors the publicly available domain alignment collections SMART and PFAM, and now also contains alignment models curated at NCBI. Structure information is used to identify the core substructure likely to be present in all family members, and to produce sequence alignments consistent with structure conservation. This alignment model allows NCBI curators to annotate 'columns' corresponding to functional sites conserved among family members.


Assuntos
Bases de Dados de Proteínas , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Animais , Sequência Conservada , Armazenamento e Recuperação da Informação , Modelos Moleculares , Alinhamento de Sequência
4.
Nucleic Acids Res ; 31(1): 474-7, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12520055

RESUMO

Three-dimensional structures are now known within most protein families and it is likely, when searching a sequence database, that one will identify a homolog of known structure. The goal of Entrez's 3D-structure database is to make structure information and the functional annotation it can provide easily accessible to molecular biologists. To this end, Entrez's search engine provides several powerful features: (i) links between databases, for example between a protein's sequence and structure; (ii) pre-computed sequence and structure neighbors; and (iii) structure and sequence/structure alignment visualization. Here, we focus on a new feature of Entrez's Molecular Modeling Database (MMDB): Graphical summaries of the biological annotation available for each 3D structure, based on the results of automated comparative analysis. MMDB is available at: http://www.ncbi.nlm.nih.gov/Entrez/structure.html.


Assuntos
Bases de Dados de Proteínas , Modelos Moleculares , Homologia Estrutural de Proteína , Animais , Gráficos por Computador , Imageamento Tridimensional , Estrutura Terciária de Proteína , Proteínas/química
5.
BMC Bioinformatics ; 4: 41, 2003 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-12969510

RESUMO

BACKGROUND: The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies. RESULTS: We describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs) from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after eukaryotic orthologous groups. The COG collection currently consists of 138,458 proteins, which form 4873 COGs and comprise 75% of the 185,505 (predicted) proteins encoded in 66 genomes of unicellular organisms. The eukaryotic orthologous groups (KOGs) include proteins from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and Homo sapiens), one plant, Arabidopsis thaliana, two fungi (Saccharomyces cerevisiae and Schizosaccharomyces pombe), and the intracellular microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters of orthologs, which include 59,838 proteins, or approximately 54% of the analyzed eukaryotic 110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of new eukaryotic genomes is expected to result in substantial increase in the coverage of eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a conserved core represented in all analyzed species and consisting of approximately 20% of the KOG set. This conserved portion of the KOG set is much greater than the ubiquitous portion of the COG set (approximately 1% of the COGs). In part, this difference is probably due to the small number of included eukaryotic genomes, but it could also reflect the relative compactness of eukaryotes as a clade and the greater evolutionary stability of eukaryotic genomes. CONCLUSION: The updated collection of orthologous protein sets for prokaryotes and eukaryotes is expected to be a useful platform for functional annotation of newly sequenced genomes, including those of complex eukaryotes, and genome-wide evolutionary studies.


Assuntos
Bases de Dados de Proteínas/tendências , Células Eucarióticas , Proteínas/classificação , Proteínas/genética , Animais , Bases de Dados de Ácidos Nucleicos/tendências , Células Eucarióticas/química , Células Eucarióticas/fisiologia , Evolução Molecular , Humanos , National Institutes of Health (U.S.) , Proteínas/fisiologia , Terminologia como Assunto , Estados Unidos
6.
Genome Biol ; 5(2): R7, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14759257

RESUMO

BACKGROUND: Sequencing the genomes of multiple, taxonomically diverse eukaryotes enables in-depth comparative-genomic analysis which is expected to help in reconstructing ancestral eukaryotic genomes and major events in eukaryotic evolution and in making functional predictions for currently uncharacterized conserved genes. RESULTS: We examined functional and evolutionary patterns in the recently constructed set of 5,873 clusters of predicted orthologs (eukaryotic orthologous groups or KOGs) from seven eukaryotic genomes: Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae, Schizosaccharomyces pombe and Encephalitozoon cuniculi. Conservation of KOGs through the phyletic range of eukaryotes strongly correlates with their functions and with the effect of gene knockout on the organism's viability. The approximately 40% of KOGs that are represented in six or seven species are enriched in proteins responsible for housekeeping functions, particularly translation and RNA processing. These conserved KOGs are often essential for survival and might approximate the minimal set of essential eukaryotic genes. The 131 single-member, pan-eukaryotic KOGs we identified were examined in detail. For around 20 that remained uncharacterized, functions were predicted by in-depth sequence analysis and examination of genomic context. Nearly all these proteins are subunits of known or predicted multiprotein complexes, in agreement with the balance hypothesis of evolution of gene copy number. Other KOGs show a variety of phyletic patterns, which points to major contributions of lineage-specific gene loss and the 'invention' of genes new to eukaryotic evolution. Examination of the sets of KOGs lost in individual lineages reveals co-elimination of functionally connected genes. Parsimonious scenarios of eukaryotic genome evolution and gene sets for ancestral eukaryotic forms were reconstructed. The gene set of the last common ancestor of the crown group consists of 3,413 KOGs and largely includes proteins involved in genome replication and expression, and central metabolism. Only 44% of the KOGs, mostly from the reconstructed gene set of the last common ancestor of the crown group, have detectable homologs in prokaryotes; the remainder apparently evolved via duplication with divergence and invention of new genes. CONCLUSIONS: The KOG analysis reveals a conserved core of largely essential eukaryotic genes as well as major diversification and innovation associated with evolution of eukaryotic genomes. The results provide quantitative support for major trends of eukaryotic evolution noticed previously at the qualitative level and a basis for detailed reconstruction of evolution of eukaryotic genomes and biology of ancestral forms.


Assuntos
Células Eucarióticas/classificação , Genoma , Filogenia , Proteínas/classificação , Animais , Caenorhabditis elegans/genética , Evolução Molecular , Deleção de Genes , Humanos , Células Procarióticas/classificação , Estrutura Terciária de Proteína , Proteínas/genética , Proteínas/fisiologia , Análise de Sequência de Proteína , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA