Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 127: 287-302, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30885791

RESUMO

Hyperhomocysteinemia has been implicated in several neurodegenerative disorders including ischemic stroke. However, the pathological consequences of ischemic insult in individuals predisposed to hyperhomocysteinemia and the associated etiology are unknown. In this study, we evaluated the outcome of transient ischemic stroke in a rodent model of hyperhomocysteinemia, developed by subcutaneous implantation of osmotic pumps containing L-homocysteine into male Wistar rats. Our findings show a 42.3% mortality rate in hyperhomocysteinemic rats as compared to 7.7% in control rats. Magnetic resonance imaging of the brain in the surviving rats shows that mild hyperhomocysteinemia leads to exacerbation of ischemic injury within 24 h, which remains elevated over time. Behavioral studies further demonstrate significant deficit in sensorimotor functions in hyperhomocysteinemic rats compared to control rats. Using pharmacological inhibitors targeting the NMDAR subtypes, the study further demonstrates that inhibition of GluN2A-containing NMDARs significantly reduces ischemic brain damage in hyperhomocysteinemic rats but not in control rats, indicating that hyperhomocysteinemia-mediated exacerbation of ischemic brain injury involves GluN2A-NMDAR signaling. Complementary studies in GluN2A-knockout mice show that in the absence of GluN2A-NMDARs, hyperhomocysteinemia-associated exacerbation of ischemic brain injury is blocked, confirming that GluN2A-NMDAR activation is a critical determinant of the severity of ischemic damage under hyperhomocysteinemic conditions. Furthermore, at the molecular level we observe GluN2A-NMDAR dependent sustained increase in ERK MAPK phosphorylation under hyperhomocysteinemic condition that has been shown to be involved in homocysteine-induced neurotoxicity. Taken together, the findings show that hyperhomocysteinemia triggers a unique signaling pathway that in conjunction with ischemia-induced pathways enhance the pathology of stroke under hyperhomocysteinemic conditions.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Hiper-Homocisteinemia/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Comportamento Animal/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Isquemia Encefálica/complicações , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Progressão da Doença , Homocisteína/sangue , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/diagnóstico por imagem , Hiper-Homocisteinemia/patologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores de N-Metil-D-Aspartato/genética , Teste de Desempenho do Rota-Rod , Índice de Gravidade de Doença , Transdução de Sinais/fisiologia
2.
FASEB J ; 32(10): 5506-5519, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29741927

RESUMO

Cobalamin [Cbl (or B12)] deficiency causes megaloblastic anemia and a variety of neuropathies. However, homeostatic mechanisms of cyanocobalamin (CNCbl) and other Cbls by vascular endothelial cells are poorly understood. Herein, we describe our investigation into whether cultured bovine aortic endothelial cells (BAECs) perform transcytosis of B12, namely, the complex formed between serum transcobalamin and B12, designated as holo-transcobalamin (holo-TC). We show that cultured BAECs endocytose [57Co]-CNCbl-TC (source material) via the CD320 receptor. The bound Cbl is transported across the cell both via exocytosis in its free form, [57Co]-CNCbl, and via transcytosis as [57Co]-CNCbl-TC. Transcellular mobilization of Cbl occurred in a bidirectional manner. A portion of the endocytosed [57Co]-CNCbl was enzymatically processed by methylmalonic aciduria combined with homocystinuria type C (cblC) with subsequent formation of hydroxocobalamin, methylcobalamin, and adenosylcobalamin, which were also transported across the cell in a bidirectional manner. This demonstrates that transport mechanisms for Cbl in vascular endothelial cells do not discriminate between various ß-axial ligands of the vitamin. Competition studies with apoprotein- and holo-TC and holo-intrinsic factor showed that only holo-TC was effective at inhibiting transcellular transport of Cbl. Incubation of BAECs with a blocking antibody against the extracellular domain of the CD320 receptor inhibited uptake and transcytosis by ∼40%. This study reveals that endothelial cells recycle uncommitted intracellular Cbl for downstream usage by other cell types and suggests that the endothelium is self-sufficient for the specific acquisition and subsequent distribution of circulating B12 via the CD320 receptor. We posit that the endothelial lining of the vasculature is an essential component for the maintenance of serum-tissue homeostasis of B12.-Hannibal, L., Bolisetty, K., Axhemi, A., DiBello, P. M., Quadros, E. V., Fedosov, S., Jacobsen, D. W. Transcellular transport of cobalamin in aortic endothelial cells.


Assuntos
Aorta/metabolismo , Células Endoteliais/metabolismo , Transcitose/fisiologia , Vitamina B 12/farmacocinética , Animais , Aorta/citologia , Bovinos , Células Endoteliais/citologia , Vitamina B 12/farmacologia
3.
PLoS Pathog ; 12(10): e1005949, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27760199

RESUMO

The methylfolate trap, a metabolic blockage associated with anemia, neural tube defects, Alzheimer's dementia, cardiovascular diseases, and cancer, was discovered in the 1960s, linking the metabolism of folate, vitamin B12, methionine and homocysteine. However, the existence or physiological significance of this phenomenon has been unknown in bacteria, which synthesize folate de novo. Here we identify the methylfolate trap as a novel determinant of the bacterial intrinsic death by sulfonamides, antibiotics that block de novo folate synthesis. Genetic mutagenesis, chemical complementation, and metabolomic profiling revealed trap-mediated metabolic imbalances, which induced thymineless death, a phenomenon in which rapidly growing cells succumb to thymine starvation. Restriction of B12 bioavailability, required for preventing trap formation, using an "antivitamin B12" molecule, sensitized intracellular bacteria to sulfonamides. Since boosting the bactericidal activity of sulfonamides through methylfolate trap induction can be achieved in Gram-negative bacteria and mycobacteria, it represents a novel strategy to render these pathogens more susceptible to existing sulfonamides.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Resistência Microbiana a Medicamentos/fisiologia , Ácido Fólico/metabolismo , Homocisteína/metabolismo , Metionina/metabolismo , Testes de Sensibilidade Microbiana , Vitamina B 12/metabolismo
4.
Clin Chem Lab Med ; 51(3): 477-88, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23241609

RESUMO

The causes of cobalamin (B12, Cbl) deficiency are multifactorial. Whether nutritional due to poor dietary intake, or functional due to impairments in absorption or intracellular processing and trafficking events, the major symptoms of Cbl deficiency include megaloblastic anemia, neurological deterioration and in extreme cases, failure to thrive and death. The common biomarkers of Cbl deficiency (hyperhomocysteinemia and methylmalonic acidemia) are extremely valuable diagnostic indicators of the condition, but little is known about the changes that occur at the protein level. A mechanistic explanation bridging the physiological changes associated with functional B12 deficiency with its intracellular processers and carriers is lacking. In this article, we will cover the effects of B12 deficiency in a cblC-disrupted background (also referred to as MMACHC) as a model of functional Cbl deficiency. As will be shown, major protein changes involve the cytoskeleton, the neurological system as well as signaling and detoxification pathways. Supplementation of cultured MMACHC-mutant cells with hydroxocobalamin (HOCbl) failed to restore these variants to the normal phenotype, suggesting that a defective Cbl processing pathway produces irreversible changes at the protein level.


Assuntos
Proteômica , Vitamina B 12/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Humanos , Sistema Nervoso/metabolismo , Oxirredutases , Biossíntese de Proteínas , Transdução de Sinais , Vitamina B 12/química , Deficiência de Vitamina B 12/diagnóstico , Deficiência de Vitamina B 12/metabolismo , Deficiência de Vitamina B 12/patologia
5.
Alcohol Clin Exp Res ; 36(2): 214-22, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21895711

RESUMO

BACKGROUND: Adipose tissue is an important target for ethanol action. One important effect of ethanol is to reduce the secretion of adiponectin from adipocytes; this decrease is associated with lowered circulating adiponectin in rodent models of chronic ethanol feeding. Adiponectin is an insulin-sensitizing, anti-inflammatory adipokine; decreased adiponectin activity may contribute to tissue injury in response to chronic ethanol. Here, we investigated the role of cytochrome P450 2E1 (CYP2E1) and oxidative stress in the mechanism for impaired adiponectin secretion from adipocytes in response to ethanol. METHODS: Male Wistar rats were fed a liquid diet containing ethanol as 36% of calories or pair-fed a control diet for 4 weeks. 3T3-L1 adipocyte cultures, expressing CYP2E1 or not, were exposed to ethanol or 4-hydroxynonenal (4-HNE). RESULTS: Chronic ethanol feeding to rats suppressed the secretion of adiponectin from isolated epididymal adipocytes. Ethanol feeding induced the expression of CYP2E1 in adipocytes and increased markers of oxidative stress, including 4-HNE and protein carbonyls. Because adiponectin is posttranslationally processed in the endoplasmic reticulum and Golgi, we investigated the impact of ethanol on the redox status of high-density microsomes. Chronic ethanol decreased the ratio of reduced glutathione to oxidized glutathione (4.6:1, pair-fed; 2.9:1, ethanol-fed) in high-density microsomes isolated from rat epididymal adipose tissue. We next utilized the 3T3-L1 adipocyte-like cell model to interrogate the mechanisms for impaired adiponectin secretion. Culture of 3T3-L1 adipocytes overexpressing exogenous CYP2E1, but not those overexpressing antisense CYP2E1, with ethanol increased oxidative stress and impaired adiponectin secretion from intracellular pools. Consistent with a role of oxidative stress in impaired adiponectin secretion, challenge of 3T3-L1 adipocytes with 4-HNE also reduced adiponectin mRNA expression and secretion, without affecting intracellular adiponectin concentration. CONCLUSIONS: These data demonstrate that CYP2E1-dependent reactive oxygen species production in response to ethanol disrupts adiponectin secretion from adipocytes.


Assuntos
Adipócitos/metabolismo , Adiponectina/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Citocromo P-450 CYP2E1/fisiologia , Etanol/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Biotina/análogos & derivados , Biotina/farmacologia , Western Blotting , Separação Celular , Ensaio de Imunoadsorção Enzimática , Glutationa/metabolismo , Imuno-Histoquímica , Técnicas In Vitro , L-Lactato Desidrogenase/sangue , Masculino , Camundongos , Microssomos/efeitos dos fármacos , Microssomos/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos
6.
Mol Cell Proteomics ; 9(3): 471-85, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20008833

RESUMO

Hyperhomocysteinemia has long been associated with atherosclerosis and thrombosis and is an independent risk factor for cardiovascular disease. Its causes include both genetic and environmental factors. Although homocysteine is produced in every cell as an intermediate of the methionine cycle, the liver contributes the major portion found in circulation, and fatty liver is a common finding in homocystinuric patients. To understand the spectrum of proteins and associated pathways affected by hyperhomocysteinemia, we analyzed the mouse liver proteome of gene-induced (cystathionine beta-synthase (CBS)) and diet-induced (high methionine) hyperhomocysteinemic mice using two-dimensional difference gel electrophoresis and Ingenuity Pathway Analysis. Nine proteins were identified whose expression was significantly changed by 2-fold (p < or = 0.05) as a result of genotype, 27 proteins were changed as a result of diet, and 14 proteins were changed in response to genotype and diet. Importantly, three enzymes of the methionine cycle were up-regulated. S-Adenosylhomocysteine hydrolase increased in response to genotype and/or diet, whereas glycine N-methyltransferase and betaine-homocysteine methyltransferase only increased in response to diet. The antioxidant proteins peroxiredoxins 1 and 2 increased in wild-type mice fed the high methionine diet but not in the CBS mutants, suggesting a dysregulation in the antioxidant capacity of those animals. Furthermore, thioredoxin 1 decreased in both wild-type and CBS mutants on the diet but not in the mutants fed a control diet. Several urea cycle proteins increased in both diet groups; however, arginase 1 decreased in the CBS(+/-) mice fed the control diet. Pathway analysis identified the retinoid X receptor signaling pathway as the top ranked network associated with the CBS(+/-) genotype, whereas xenobiotic metabolism and the NRF2-mediated oxidative stress response were associated with the high methionine diet. Our results show that hyperhomocysteinemia, whether caused by a genetic mutation or diet, alters the abundance of several liver proteins involved in homocysteine/methionine metabolism, the urea cycle, and antioxidant defense.


Assuntos
Antioxidantes/metabolismo , Cistationina beta-Sintase/genética , Dieta/efeitos adversos , Homocisteína/metabolismo , Hiper-Homocisteinemia/enzimologia , Fígado/enzimologia , Metionina/metabolismo , Nutrigenômica , Ureia/metabolismo , Adenosil-Homocisteinase/metabolismo , Animais , Betaína-Homocisteína S-Metiltransferase/metabolismo , Glicina N-Metiltransferase/metabolismo , Hiper-Homocisteinemia/induzido quimicamente , Hiper-Homocisteinemia/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peroxirredoxinas/metabolismo , Proteômica
7.
Vitam Horm ; 119: 275-298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35337623

RESUMO

Vitamin B12 (cobalamin, Cbl, B12) is a water-soluble micronutrient synthesized exclusively by a group of microorganisms. Human beings are unable to make B12 and thus obtain the vitamin via intake of animal products, fermented plant-based foods or supplements. Vitamin B12 obtained from the diet comprises three major chemical forms, namely hydroxocobalamin (HOCbl), methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl). The most common form of B12 present in supplements is cyanocobalamin (CNCbl). Yet, these chemical forms cannot be utilized directly as they come, but instead, they undergo chemical processing by the MMACHC protein, also known as CblC. Processing of dietary B12 by CblC involves removal of the upper-axial ligand (beta-ligand) yielding the one-electron reduced intermediate cob(II)alamin. Newly formed cob(II)alamin undergoes trafficking and delivery to the two B12-dependent enzymes, cytosolic methionine synthase (MS) and mitochondrial methylmalonyl-CoA mutase (MUT). The catalytic cycles of MS and MUT incorporate cob(II)alamin as a precursor to regenerate the coenzyme forms MeCbl and AdoCbl, respectively. Mutations and epimutations in the MMACHC gene result in cblC disease, the most common inborn error of B12 metabolism, which manifests with combined homocystinuria and methylmalonic aciduria. Elevation of metabolites homocysteine and methylmalonic acid occurs because the lack of an active CblC blocks formation of the indispensable precursor cob(II)alamin that is necessary to activate MS and MUT. Thus, in patients with cblC disease, vitamin B12 is absorbed and present in circulation in normal to high concentrations, yet, cells are unable to make use of it. Mutations in seemingly unrelated genes that modify MMACHC gene expression also result in clinical phenotypes that resemble cblC disease. We review current knowledge on structural and functional aspects of intracellular processing of vitamin B12 by the versatile protein CblC, its partners and possible regulators.


Assuntos
Homocistinúria , Vitamina B 12 , Animais , Homocistinúria/genética , Humanos , Hidroxocobalamina/metabolismo , Ligantes , Oxirredutases , Vitamina B 12/metabolismo , Vitaminas
8.
iScience ; 25(9): 104981, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36105582

RESUMO

Nutritional deficiency and genetic errors that impair the transport, absorption, and utilization of vitamin B12 (B12) lead to hematological and neurological manifestations. The cblC disease (cobalamin complementation type C) is an autosomal recessive disorder caused by mutations and epi-mutations in the MMACHC gene and the most common inborn error of B12 metabolism. Pathogenic mutations in MMACHC disrupt enzymatic processing of B12, an indispensable step before micronutrient utilization by the two B12-dependent enzymes methionine synthase (MS) and methylmalonyl-CoA mutase (MUT). As a result, patients with cblC disease exhibit plasma elevation of homocysteine (Hcy, substrate of MS) and methylmalonic acid (MMA, degradation product of methylmalonyl-CoA, substrate of MUT). The cblC disorder manifests early in childhood or in late adulthood with heterogeneous multi-organ involvement. This review covers current knowledge on the cblC disease, structure-function relationships of the MMACHC protein, the genotypic and phenotypic spectra in humans, experimental disease models, and promising therapies.

9.
J Biol Chem ; 285(37): 28912-23, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20605795

RESUMO

The increased risk of venous thromboembolism in cancer patients has been attributed to enhanced tissue factor (TF) procoagulant activity (PCA) on the surface of cancer cells. Recent studies have shown that TF PCA can be modulated by GRP78, an endoplasmic reticulum (ER)-resident molecular chaperone. In this study, we investigated the role of cell surface GRP78 in modulating TF PCA in several human cancer cell lines. Although both GRP78 and TF are present on the cell surface of cancer cells, there was no evidence of a stable interaction between recombinant human GRP78 and TF, nor was there any effect of exogenously added recombinant GRP78 on cell surface TF PCA. Treatment of cells with the ER stress-inducing agent thapsigargin, an inhibitor of the sarco(endo)plasmic reticulum Ca(2+) pump that causes Ca(2+) efflux from ER stores, increased cytosolic [Ca(2+)] and induced TF PCA. Consistent with these findings, anti-GRP78 autoantibodies that were isolated from the serum of patients with prostate cancer and bind to a specific N-terminal epitope (Leu(98)-Leu(115)) on cell surface GRP78, caused a dose-dependent increase in cytosolic [Ca(2+)] and enhanced TF PCA. The ability to interfere with cell surface GRP78 binding, block phospholipase C activity, sequester ER Ca(2+), or prevent plasma membrane phosphatidylserine exposure resulted in a significant decrease in the TF PCA induced by anti-GRP78 autoantibodies. Taken together, these findings provide evidence that engagement of the anti-GRP78 autoantibodies with cell surface GRP78 increases TF PCA through a mechanism that involves the release of Ca(2+) from ER stores. Furthermore, blocking GRP78 signaling on the surface of cancer cells attenuates TF PCA and has the potential to reduce the risk of cancer-related venous thromboembolism.


Assuntos
Anticorpos Antineoplásicos/imunologia , Autoanticorpos/imunologia , Cálcio/imunologia , Retículo Endoplasmático/imunologia , Proteínas de Choque Térmico/imunologia , Neoplasias da Próstata/imunologia , Tromboplastina/imunologia , Tromboembolia Venosa/imunologia , Anticorpos Antineoplásicos/metabolismo , Anticorpos Antineoplásicos/farmacologia , Autoanticorpos/metabolismo , Autoanticorpos/farmacologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Inibidores Enzimáticos/farmacologia , Epitopos/imunologia , Epitopos/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Fosfatidilserinas/imunologia , Fosfatidilserinas/metabolismo , Neoplasias da Próstata/complicações , Neoplasias da Próstata/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/imunologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Tapsigargina/farmacologia , Tromboplastina/metabolismo , Fosfolipases Tipo C/imunologia , Fosfolipases Tipo C/metabolismo , Tromboembolia Venosa/etiologia , Tromboembolia Venosa/metabolismo
11.
Mol Genet Metab ; 103(3): 226-39, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21497120

RESUMO

Cobalamin (Cbl, B(12)) is an essential micronutrient required to fulfill the enzymatic reactions of cytosolic methylcobalamin-dependent methionine synthase and mitochondrial adenosylcobalamin-dependent methylmalonyl-CoA mutase. Mutations in the MMACHC gene (cblC complementation group) disrupt processing of the upper-axial ligand of newly internalized cobalamins, leading to functional deficiency of the vitamin. Patients with cblC disease present with both hyperhomocysteinemia and methylmalonic acidemia, cognitive dysfunction, and megaloblastic anemia. In the present study we show that cultured skin fibroblasts from cblC patients export increased levels of both homocysteine and methylmalonic acid compared to control skin fibroblasts, and that they also have decreased levels of total intracellular folates. This is consistent with the clinical phenotype of functional cobalamin deficiency in vivo. The protein changes that accompany human functional Cbl deficiency are unknown. The proteome of control and cblC fibroblasts was quantitatively examined by two dimensional difference in-gel electrophoresis (2D-DIGE) and liquid chromatography-electrospray ionization-mass spectrometry (LC/ESI/MS). Major changes were observed in the expression levels of proteins involved in cytoskeleton organization and assembly, the neurological system and cell signaling. Pathway analysis of the differentially expressed proteins demonstrated strong associations with neurological disorders, muscular and skeletal disorders, and cardiovascular diseases in the cblC mutant cell lines. Supplementation of the cell cultures with hydroxocobalamin did not restore the cblC proteome to the patterns of expression observed in control cells. These results concur with the observed phenotype of patients with the cblC disorder and their sometimes poor response to treatment with hydroxocobalamin. Our findings could be valuable for designing alternative therapies to alleviate the clinical manifestation of the cblC disorder, as some of the protein changes detected in our study are common hallmarks of known pathologies such as Alzheimer's and Parkinson's diseases as well as muscular dystrophies.


Assuntos
Proteínas de Transporte/metabolismo , Proteoma , Deficiência de Vitamina B 12/fisiopatologia , Erros Inatos do Metabolismo dos Aminoácidos , Proteínas de Transporte/genética , Linhagem Celular , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Ácido Fólico/metabolismo , Homocisteína/metabolismo , Humanos , Hidroxocobalamina/farmacologia , Espaço Intracelular/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Ácido Metilmalônico/metabolismo , Mutação/genética , Oxirredutases , Fenótipo , Vimentina/metabolismo , Vitamina B 12/metabolismo , Deficiência de Vitamina B 12/genética , Complexo Vitamínico B/farmacologia
12.
J Inherit Metab Dis ; 34(1): 57-65, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20567909

RESUMO

Elevated maternal plasma concentrations of homocysteine (Hcy) are associated with pregnancy complications and adverse neonatal outcomes. The postulate that we wish to advance here is that placental transport of Hcy, by competing with endogenous amino acids for transporter activity, may account for some of the damaging impacts of Hcy on placental metabolism and function as well as fetal development. In this article, we provide an overview of some recent studies characterising the transport mechanisms for Hcy across the microvillous plasma membrane (MVM) of the syncytiotrophoblast, the transporting epithelium of human placenta. Three Hcy transport systems have been identified, systems L, A and y(+)L. This was accomplished using a strategy of competitive inhibition to investigate the effects of Hcy on the uptake of well-characterised radiolabelled substrates for each transport system into isolated MVM vesicles. The reverse experiments were also performed, examining the effects of model substrates on [³5S]L-Hcy uptake. This article describes the evidence for systems L, A and y(+)L involvement in placental Hcy transport and discusses the physiological implications of these findings with respect to placental function and fetal development.


Assuntos
Membrana Celular/metabolismo , Homocisteína/metabolismo , Microvilosidades/metabolismo , Placenta/metabolismo , Sistema A de Transporte de Aminoácidos/metabolismo , Sistema A de Transporte de Aminoácidos/fisiologia , Sistema L de Transporte de Aminoácidos/metabolismo , Sistema L de Transporte de Aminoácidos/fisiologia , Sistema y+L de Transporte de Aminoácidos/metabolismo , Sistema y+L de Transporte de Aminoácidos/fisiologia , Transporte Biológico , Feminino , Homocisteína/farmacocinética , Humanos , Microvilosidades/ultraestrutura , Modelos Biológicos , Placenta/ultraestrutura , Gravidez , Radioisótopos de Enxofre/farmacocinética
13.
Biochimie ; 183: 108-125, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33190793

RESUMO

Thiolatocobalamins are a class of cobalamins comprised of naturally occurring and synthetic ligands. Glutathionylcobalamin (GSCbl) occurs naturally in mammalian cells, and also as an intermediate in the glutathione-dependent dealkylation of methylcobalamin (MeCbl) to form cob(I)alamin by pure recombinant CblC from C. elegans. Glutathione-driven deglutathionylation of GSCbl was demonstrated both in mammalian as well as in C. elegans CblC. Dethiolation is orders of magnitude faster than dealkylation of Co-C bonded cobalamins, which motivated us to investigate two synthetic thiolatocobalamins as substrates to repair the enzymatic activity of pathogenic CblC variants in humans. We report the synthesis and kinetic characterization of cysteaminylcobalamin (CyaCbl) and 2-mercaptopropionylglycinocobalamin (MpgCbl). Both CyaCbl and MpgCbl were obtained in high purity (90-95%) and yield (78-85%). UV-visible spectral properties agreed with those reported for other thiolatocobalamins with absorbance maxima observed at 372 nm and 532 nm. Both CyaCbl and MpgCbl bound to wild type human recombinant CblC inducing spectral blue-shifts characteristic of the respective base-on to base-off transitions. Addition of excess glutathione (GSH) resulted in rapid elimination of the ß-ligand to give aquacobalamin (H2OCbl) as the reaction product under aerobic conditions. Further, CyaCbl and MpgCbl underwent spontaneous dethiolation thereby repairing the loss of activity of pathogenic variants of human CblC, namely R161G and R161Q. We posit that thiolatocobalamins could be exploited therapeutically for the treatment of inborn errors of metabolism that impair processing of dietary and supplemental cobalamin forms. While these disorders are targets for newborn screening in some countries, there is currently no effective treatment available to patients.


Assuntos
Mutação de Sentido Incorreto , Oxirredutases/química , Vitamina B 12/química , Substituição de Aminoácidos , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Glutationa Transferase/química , Glutationa Transferase/genética , Humanos , Oxirredutases/genética
14.
Hum Mutat ; 31(8): 924-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20524213

RESUMO

Elevated methylmalonic acid in five asymptomatic newborns whose fibroblasts showed decreased uptake of transcobalamin-bound cobalamin (holo-TC), suggested a defect in the cellular uptake of cobalamin. Analysis of TCblR/CD320, the gene for the receptor for cellular uptake of holo-TC, identified a homozygous single codon deletion, c.262_264GAG (p.E88del), resulting in the loss of a glutamic acid residue in the low-density lipoprotein receptor type A-like domain. Inserting the codon by site-directed mutagenesis fully restored TCblR function.


Assuntos
Antígenos CD/genética , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Mutação/genética , Triagem Neonatal/métodos , Transcobalaminas/metabolismo , Vitamina B 12/metabolismo , Sequência de Aminoácidos , Antígenos CD/química , Sequência de Bases , Células Cultivadas , Análise Mutacional de DNA , Feminino , Fibroblastos/metabolismo , Homocisteína/metabolismo , Humanos , Lactente , Recém-Nascido , Ácido Metilmalônico/metabolismo , Dados de Sequência Molecular , Gravidez , Receptores de Superfície Celular
15.
J Biol Chem ; 284(48): 33418-24, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19801555

RESUMO

Pathways for tailoring and processing vitamins into active cofactor forms exist in mammals that are unable to synthesize these cofactors de novo. A prerequisite for intracellular tailoring of alkylcobalamins entering from the circulation is removal of the alkyl group to generate an intermediate that can subsequently be converted into the active cofactor forms. MMACHC, a cytosolic cobalamin trafficking chaperone, has been shown recently to catalyze a reductive decyanation reaction when it encounters cyanocobalamin. In this study, we demonstrate that this versatile protein catalyzes an entirely different chemical reaction with alkylcobalamins using the thiolate of glutathione for nucleophilic displacement to generate cob(I)alamin and the corresponding glutathione thioether. Biologically relevant thiols, e.g. cysteine and homocysteine, cannot substitute for glutathione. The catalytic turnover numbers for the dealkylation of methylcobalamin and 5'-deoxyadenosylcobalamin by MMACHC are 11.7 +/- 0.2 and 0.174 +/- 0.006 h(-1) at 20 degrees C, respectively. This glutathione transferase activity of MMACHC is reminiscent of the methyltransferase chemistry catalyzed by the vitamin B(12)-dependent methionine synthase and is impaired in the cblC group of inborn errors of cobalamin disorders.


Assuntos
Proteínas de Transporte/metabolismo , Glutationa Transferase/metabolismo , Vitamina B 12/análogos & derivados , Vitamina B 12/metabolismo , Alcanos/metabolismo , Transporte Biológico , Proteínas de Transporte/genética , Catálise , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Radioisótopos de Cobalto , Cobamidas/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Glutationa/metabolismo , Humanos , Modelos Biológicos , Mutação , Oxirredutases , Espectrometria de Massas por Ionização por Electrospray , Compostos de Sulfidrila/metabolismo
16.
Hepatology ; 49(5): 1709-17, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19205032

RESUMO

UNLABELLED: Ethanol-induced liver injury is characterized by increased formation of reactive oxygen species (ROS) and inflammatory cytokines, resulting in the development of hepatic steatosis, injury, and cell death by necrosis and apoptosis. Thioredoxin (Trx), a potent antioxidant and antiinflammatory molecule with antiapoptotic properties, protects animals from a number of inflammatory diseases. However, the effects of ethanol on Trx or its role in ethanol-induced liver injury are not known. Female C57BL/6 mice were allowed ad libitum access to a Lieber-deCarli ethanol diet with 5.4% of calories as ethanol for 2 days to acclimate them to the diet, followed by 2 days with 32.4% of calories as ethanol or pair-fed control diet. Hepatic Trx-1 was decreased by ethanol feeding; daily supplementation with recombinant human Trx (rhTrx) prevented this ethanol-induced decrease. Therefore, we tested the hypothesis that administration of rhTrx during ethanol exposure would attenuate ethanol-induced oxidative stress, inflammatory cytokine production, and apoptosis. Mice were treated with a daily intraperitoneal injection of either 5 g/kg of rhTrx or phosphate-buffered saline (PBS). CONCLUSION: Ethanol feeding increased accumulation of hepatic 4-hydroxynonenal protein adducts, expression of hepatic tumor necrosis factor alpha, and resulted in hepatic steatosis and increased plasma aspartate aminotransferase and alanine aminotransferase. In ethanol-fed mice, treatment with rhTrx reduced 4-hydroxynonenal adduct accumulation, inflammatory cytokine expression, decreased hepatic triglyceride, and improved liver enzyme profiles. Ethanol feeding also increased transferase-mediated dUTP-biotin nick-end labeling-positive cells, caspase-3 activity, and cytokeratin-18 staining in the liver. rhTrx treatment prevented these increases. In summary, rhTrx attenuated ethanol-induced increases in markers of oxidative stress, inflammatory cytokine expression, and apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Etanol/farmacologia , Hepatopatias Alcoólicas/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Tiorredoxinas/uso terapêutico , Animais , Citocinas/metabolismo , Feminino , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Tiorredoxinas/farmacologia
17.
Hepatology ; 49(5): 1554-62, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19296466

RESUMO

UNLABELLED: Chronic ethanol feeding decreases expression of adiponectin by adipocytes and circulating adiponectin. Adiponectin treatment during chronic ethanol feeding prevents liver injury in mice. Chronic ethanol feeding also increases oxidative and endoplasmic reticulum (ER) stress in adipose tissue. Here we tested the hypothesis that supplemental taurine, an amino acid that functions as a chemical chaperone/osmolyte and enhances cellular antioxidant activity, would prevent ethanol-induced decreases in adiponectin expression and attenuate liver injury. Serum adiponectin concentrations decreased as early as 4 to 7 days after feeding rats a 36% ethanol diet. This rapid decrease was associated with increased oxidative, but not ER, stress in subcutaneous adipose tissue. Taurine prevented ethanol-induced oxidative stress and increased inflammatory cytokine expression in adipose tissue. Ethanol feeding also rapidly decreased expression of transcription factors regulating adiponectin expression (CCAAT/enhancer binding protein alpha; peroxisome proliferator-activated receptor alpha/gamma) in subcutaneous adipose tissue. Taurine prevented the ethanol-induced decrease in CCAAT/enhancer binding protein alpha and peroxisome proliferator-activated receptor alpha, normalizing adiponectin messenger (m)RNA and serum adiponectin concentrations. In the liver, taurine prevented ethanol-induced oxidative stress and attenuated tumor necrosis factor alpha expression and steatosis, at least in part, by increasing expression of genes involved in fatty acid oxidation. CONCLUSION: In subcutaneous adipose tissue, taurine decreased ethanol-induced oxidative stress and cytokine expression, as well as normalized expression of adiponectin mRNA. Taurine prevented ethanol-induced decreases in serum adiponectin; normalized adiponectin was associated with a reduction in hepatic oxidative stress, tumor necrosis factor alpha expression, and steatosis. Taken together, these data demonstrate that taurine has important protective effects against ethanol-induced tissue injury in both adipose and liver tissue.


Assuntos
Adiponectina/sangue , Tecido Adiposo/metabolismo , Citocinas/metabolismo , Etanol/metabolismo , Fígado Gorduroso/prevenção & controle , Taurina/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Suplementos Nutricionais , Etanol/toxicidade , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Taurina/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
18.
Inorg Chem ; 49(21): 9921-7, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20863098

RESUMO

The first evidence of a complex between glutathione and cobalamin, glutathionylcobalamin (GSCbl), was presented by Wagner and Bernhauer more than 40 years ago (Ann. N.Y. Acad. Sci. 1964, 112, 580). More recently, NMR and EXAFS solution studies by Brown et al. (Biochemistry 1993, 32, 8421) and Scheuring et al. (Biochemistry 1994, 33, 6310), respectively, provided evidence that the glutathionyl moiety in GSCbl is bound to the cobalt center via a Co-S bond. Despite continued efforts, the structural analysis of glutathionylcobalamin in the solid state has remained elusive. Here, we report the first atomic resolution crystal structure of GSCbl, refined to a crystallographic R factor of 0.0683. The glutathione moiety is bound to the cobalt center through the sulfur atom as expected, with a Co-S bond distance of 2.295(1) Å. This distance agrees with the distance obtained from the EXAFS analysis of GSCbl (2.280(5) Å). However, the bond to the axial α-5,6-dimethylbenzimidazole base (DMB), 2.074(3) Å, is significantly shorter than that determined from the EXAFS measurements (Co-N3B = 2.15(3) Å). The corrin fold angle is 24.7°, the highest ever reported for a cobalamin structure, and points in the direction of the ß face of the corrin, toward the glutathione (GS(-)). The GS(-) ligand has been modeled in two conformations, each featuring distinct hydrogen bonding interactions. In both conformations, the α-carboxylate group of the GS(-) ligand interacts with the generally rigid side chain a of the cobalamin molecule, resulting in two distinct conformations. A comparison with the structure of other thiolatocobalamins revealed high similarity in the positions of the atoms in the cysteinyl moiety, the fold of the corrin rings, and the Co-S bond distances.


Assuntos
Glutationa/análogos & derivados , Vitamina B 12/análogos & derivados , Cristalografia por Raios X , Glutationa/síntese química , Glutationa/química , Modelos Moleculares , Estrutura Molecular , Vitamina B 12/síntese química , Vitamina B 12/química
19.
J Clin Med ; 9(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707782

RESUMO

Background: Hepatic glycogen storage diseases (GSDs) are inborn errors of metabolism affecting the synthesis or breakdown of glycogen in the liver. This study, for the first time, systematically assessed vitamin B12 status in a large cohort of hepatic GSD patients. Methods: Plasma vitamin B12, total plasma homocysteine (tHcy) and methylmalonic acid concentrations were measured in 44 patients with hepatic GSDs and compared to 42 healthy age- and gender-matched controls. Correlations of vitamin B12 status with different disease markers of GSDs (including liver transaminase activities and triglycerides) as well as the vitamin B12 intake were studied. Results: GSD patients had significantly higher plasma vitamin B12 concentrations than healthy controls (p = 0.0002). Plasma vitamin B12 concentration remained elevated in GSD patients irrespective of vitamin B12 intake. Plasma vitamin B12 concentrations correlated negatively with triglyceride levels, whereas no correlations were detected with liver transaminase activities (GOT and GPT) in GSD patients. Merging biomarker data of healthy controls and GSD patients showed a positive correlation between vitamin B12 status and liver function, which suggests complex biomarker associations. A combined analysis of biomarkers permitted a reliable clustering of healthy controls versus GSD patients. Conclusions: Elevated plasma concentration of vitamin B12 (irrespective of B12 intake) is a common finding in patients with hepatic GSD. The negative correlation of plasma vitamin B12 with triglyceride levels suggests an influence of metabolic control on the vitamin B12 status of GSD patients. Elevated vitamin B12 was not correlated with GOT and GPT in our cohort of GSD patients. Merging of data from healthy controls and GSD patients yielded positive correlations between these biomarkers. This apparent dichotomy highlights the intrinsic complexity of biomarker associations and argues against generalizations of liver disease and elevated vitamin B12 in blood. Further studies are needed to determine whether the identified associations are causal or coincidental, and the possible impact of chronically elevated vitamin B12 on GSD.

20.
J Physiol ; 587(Pt 16): 4001-13, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19564394

RESUMO

Elevated maternal plasma levels of homocysteine (Hcy) are associated with pregnancy complications and adverse neonatal outcomes, suggesting placental transport of Hcy may impact on fetal development. However, such transport mechanisms have not been defined. In this study we characterise Hcy transport mechanisms across the microvillous plasma membrane (MVM) of the syncytiotrophoblast, the transporting epithelium of human placenta. Three candidate transport systems, systems L, A and y(+)L, were examined utilising competitive inhibition to investigate the effects of Hcy on the uptake of well-characterised radiolabelled substrates for each system into isolated MVM vesicles, and that of model substrates on 10 microm [(35)S]l-Hcy uptake. System L activity was inhibited by both l-Hcy and dl-Hcy, comparable to model substrates including 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH). System L constituted the major transport mechanism, with significant BCH inhibition (69%) of [(35)S]l-Hcy uptake. System A activity was also inhibited by l-Hcy and dl-Hcy with a smaller contribution (21%) to [(35)S]l-Hcy uptake. Inhibition by l-Hcy and dl-Hcy of system y(+)L activity was Na(+) sensitive with a significant inhibition constant (K(i)) shift observed following K(+) replacement; l-arginine reduced [(35)S]l-Hcy uptake by 19%. Kinetic modelling of [(35)S]l-Hcy uptake resolved two, Na(+)-independent, transport components (K(m) 72 microm and 9.7 mm). This study provides evidence for the involvement of systems L, A and y(+)L in placental Hcy transport. Such transport, by competing with endogenous amino acids for transporter activity, could have major implications for syncytiotrophoblast metabolism and function as well as fetal development.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Sistema y+L de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Membrana Celular/metabolismo , Homocisteína/metabolismo , Placenta/metabolismo , Transporte Biológico Ativo , Feminino , Humanos , Técnicas In Vitro , Microvilosidades/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA