Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(25): 9103-8, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24927529

RESUMO

Transcription factor II D (TFIID) is a multiprotein complex that nucleates formation of the basal transcription machinery. TATA binding protein-associated factors 1 and 7 (TAF1 and TAF7), two subunits of TFIID, are integral to the regulation of eukaryotic transcription initiation and play key roles in preinitiation complex (PIC) assembly. Current models suggest that TAF7 acts as a dissociable inhibitor of TAF1 histone acetyltransferase activity and that this event ensures appropriate assembly of the RNA polymerase II-mediated PIC before transcriptional initiation. Here, we report the 3D structure of a complex of yeast TAF1 with TAF7 at 2.9 Å resolution. The structure displays novel architecture and is characterized by a large predominantly hydrophobic heterodimer interface and extensive cofolding of TAF subunits. There are no obvious similarities between TAF1 and known histone acetyltransferases. Instead, the surface of the TAF1-TAF7 complex contains two prominent conserved surface pockets, one of which binds selectively to an inhibitory trimethylated histone H3 mark on Lys27 in a manner that is also regulated by phosphorylation at the neighboring H3 serine. Our findings could point toward novel roles for the TAF1-TAF7 complex in regulation of PIC assembly via reading epigenetic histone marks.


Assuntos
Histona Acetiltransferases/química , Complexos Multiproteicos/química , Fatores Associados à Proteína de Ligação a TATA/química , Fator de Transcrição TFIID/química , Sítios de Ligação , Histonas/química , Humanos , Ligação Proteica , Estrutura Quaternária de Proteína
2.
Mol Cell Biol ; 27(5): 1844-58, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17210644

RESUMO

The core promoter is a critical DNA element required for accurate transcription and regulation of transcription. Several core promoter elements have been previously identified in eukaryotes, but those cannot account for transcription from most RNA polymerase II-transcribed genes. Additional, as-yet-unidentified core promoter elements must be present in eukaryotic genomes. From extensive analyses of the hepatitis B virus X gene promoter, here we identify a new core promoter element, XCPE1 (the X gene core promoter element 1), that drives RNA polymerase II transcription. XCPE1 is located between nucleotides -8 and +2 relative to the transcriptional start site (+1) and has a consensus sequence of G/A/T-G/C-G-T/C-G-G-G/A-A-G/C(+1)-A/C. XCPE1 shows fairly weak transcriptional activity alone but exerts significant, specific promoter activity when accompanied by activator-binding sites. XCPE1 is also found in the core promoter regions of about 1% of human genes, particularly in poorly characterized TATA-less genes. Our in vitro transcription studies suggest that the XCPE1-driven transcription can be highly active in the absence of TFIID because it can utilize either free TBP or the complete TFIID complex. Our findings suggest the possibility of the existence of a TAF1 (TFIID)-independent transcriptional initiation mechanism that may be used by a category of TATA-less promoters in higher eukaryotes.


Assuntos
Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIID/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sequência de Bases , Sítios de Ligação , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sequência Consenso , Células HeLa , Humanos , Neoplasias Hepáticas/patologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Plasmídeos , Ligação Proteica , RNA Mensageiro/análise , Moldes Genéticos , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação
3.
Proc Natl Acad Sci U S A ; 104(49): 19470-5, 2007 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-18048340

RESUMO

Tubulin cofactor B (TCoB) plays an important role in microtubule dynamics by facilitating the dimerization of alpha- and beta-tubulin. Recent evidence suggests that p21-activated kinase 1 (Pak1), a major signaling nodule in eukaryotic cells, phosphorylates TCoB on Ser-65 and Ser-128 and plays an essential role in microtubule regrowth. However, to date, no upstream signaling molecules have been identified to antagonize the functions of TCoB, which might help in maintaining the equilibrium of microtubules. Here, we discovered that TCoB is efficiently nitrated, mainly on Tyr-64 and Tyr-98, and nitrated-TCoB attenuates the synthesis of new microtubules. In addition, we found that nitration of TCoB antagonizes signaling-dependent phosphorylation of TCoB, whereas optimal nitration of TCoB requires the presence of functional Pak1 phosphorylation sites, thus providing a feedback mechanism to regulate phosphorylation-dependent MT regrowth. Together these findings identified TCoB as the third cytoskeleton protein to be nitrated and suggest a previously undescribed mechanism, whereby growth factor signaling may coordinately integrate nitric oxide signaling in the regulation of microtubule dynamics.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Quinases Ativadas por p21/metabolismo , Animais , Linhagem Celular , Proteínas do Citoesqueleto/genética , Humanos , Proteínas Associadas aos Microtúbulos/genética , Chaperonas Moleculares , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Nitrogênio/metabolismo , Fosforilação , Tirosina/metabolismo
4.
Phytother Res ; 24(7): 1104-6, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20578122

RESUMO

Despite world-wide efforts in fighting malaria, this mosquito-borne infectious disease is a huge burden for the population, especially in tropical and subtropical areas. The WHO recommends artemisinin-based combination therapy for the treatment of uncomplicated Plasmodium falciparum malaria. However, artemisinin resistance cannot now be ignored. Factors affecting the development of artemisinin resistance include uncontrolled use of artemisinin-based combination therapy (ACT), mobile populations and migrants, artemisinin monotherapy, the use of subtherapeutic levels of artesiminin, substandard and counterfeit drugs, high treatment cost, and co-use of artemisinin derivates as prophylactic agents. Promising herbal alternatives are already in the pipeline, but the only long-term solution for eradicating malaria would be the development of a successful vaccination.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Resistência a Medicamentos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Quimioterapia Combinada , Humanos
5.
Infect Genet Evol ; 8(2): 159-70, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18243814

RESUMO

An intraspecific study on Phlebotomus papatasi, the main proven vector of Leishmania major among the members of the subgenus Phlebotomus, was performed. The internal transcribed spacer 2 (ITS 2) of rDNA and the ND4 gene of mt DNA were sequenced from 26 populations from 18 countries (Albania, Algeria, Cyprus, Egypt, Greece, India, Iran, Israel, Italy, Lebanon, Morocco, Saudi Arabia, Spain, Syria, Tunisia, Turkey, Yugoslavia and Yemen), and compared. Samples also included three other species belonging to the subgenus Phlebotomus: P. duboscqi, a proven vector of L. major in the south of Sahara (three populations from Burkina Faso, Kenya and Senegal), P. bergeroti, a suspected vector of L. major (three populations from Oman Sultanate, Iran and Egypt), and one population of P. salehi from Iran. A phylogenetic study was carried out on the subgenus Phlebotomus. Our results confirm the validity of the morphologically characterized taxa. The position of P. salehi is doubtful. Variability in P. papatasi contrasts with that observed within other species having a wide distribution like P. (Paraphlebotomus) sergenti in the Old World or Lutzomyia (Lutzomyia) longipalpis in the New World. Consequently, it could be hypothesized that all populations of P. papatasi over its distribution area have similar vectorial capacities. The limits of the distribution area of L. major are correlated with the distribution of common rodents acting as hosts of the parasites.


Assuntos
DNA Mitocondrial/análise , DNA Espaçador Ribossômico/genética , Variação Genética , NADH Desidrogenase/genética , Febre por Flebótomos/epidemiologia , Phlebotomus/genética , Animais , Sequência de Bases , Frequência do Gene , Genética Populacional , Geografia , Haplótipos , Humanos , Filogenia , Análise de Sequência de DNA
7.
Folia Parasitol (Praha) ; 54(4): 301-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18303772

RESUMO

The sand fly Phlebotomus papatasi Scopoli, 1786, the vector of Leishmania major Yakimoff et Schokhor, 1914, is found in desert areas where sugars are scarce but also in habitats that abound in sugar sources. The sand flies require sugar meals from plant sources for their energy requirements and to hydrolyze these complex sugars, they need a repertoire of glycosidases. We presumed that there are differences in the levels of glycosidase activities in flies from such habitats and also assumed that they may be instrumental in modulating the flies' susceptibility to L. major infections. Phlebotomus papatasi originating from diverse ecological habitats ranging from an oasis to desert sites were colonized. They were analyzed for weight changes and glycosidase activities before and after feeding on 1M sucrose solution. Oasis flies were smaller than desert flies but took larger sugar meals. Homogenates of these flies hydrolyzed 16 synthetic and 2 natural glycoside substrates to varying degrees. The arid-region flies tended to produce more glycosidase activity than those originating in sugar-rich environments, especially sucrase, alpha- and beta-glucosidase, aalpha-fucosidase, alpha-mannosidase, and alpha- and beta-N-acetylgalactosaminidase. However, chitinolytic enzyme activities and particularly the beta-N-acetylhexosaminidase activity of oasis flies were higher than other flies tested. In comparing the desert flies, there were also significant differences in glycolytic enzyme activities between the spring-line (flowering season) of flies and the autumn-line (end of dry season) flies. A range of saccharide inhibitors was tested to demonstrate the specificity of the enzymes.


Assuntos
Quitina/metabolismo , Ecossistema , Enzimas/metabolismo , Insetos Vetores/metabolismo , Phlebotomus/metabolismo , Sacarose/metabolismo , Análise de Variância , Animais , Peso Corporal , Enzimas/análise , Feminino , Leishmania major , Masculino , Fatores Sexuais , Sacarose/administração & dosagem
8.
Microbes Infect ; 7(1): 93-103, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15716069

RESUMO

Evidence is provided for genetic and biological variation among Leishmania major strains that correlates with their geographical origin. The host-parasite relationship also appears to be specific. Great gerbils, Rhombomys opimus, and fat sand rats, Psammomys obesus, are the main reservoir hosts in Central Asia and the Middle East, respectively. However, the Central Asian parasite failed to infect the Middle Eastern rodent host in the laboratory, and vice versa. A permissively primed intergenic polymorphic (PPIP)-PCR and a single-stranded conformation polymorphism (SSCP)-PCR exposed genetic polymorphism among 30 strains of L. major from different geographical regions. This was verified by subsequent sequencing of DNA from the same strains using four genomic targets: (a) the NADH-dehydrogenase (NADH-DH) gene, (b) the 6-phosphogluconate dehydrogenase (6PGD) gene, (c) the ribosomal internal transcribed spacers, and (d) an anonymous DNA sequence originally amplified with random primers. All the genetic markers indicated that the nine Central Asian strains were a separate homogenous genetic group. The Middle Eastern strains formed another geographical group that displayed heterogeneity corresponding with their different Middle Eastern locations. Molecular markers and host-parasite relationships confirmed that Central Asian and Middle Eastern strains are genetically and biologically distinct sub-populations of L. major. Three African strains of L. major were genetically closer to the Middle Eastern strains, and a representative one did infect fat sand rats, but they had distinct permissively primed inter-genic polymorphic PCR patterns and internal transcribed spacer 2 types.


Assuntos
Leishmania major/genética , Polimorfismo Genético , África , Animais , Ásia Central , Sequência de Bases , DNA Intergênico/análise , DNA Espaçador Ribossômico/genética , Gerbillinae , Humanos , Leishmania major/isolamento & purificação , Malato Desidrogenase/genética , Oriente Médio , Dados de Sequência Molecular , NADH Desidrogenase/genética , Fosfogluconato Desidrogenase/genética , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Polimorfismo Conformacional de Fita Simples , Alinhamento de Sequência , Especificidade da Espécie
9.
Am J Trop Med Hyg ; 70(4): 364-72, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15100448

RESUMO

The predominant sand fly species collected inside houses in Kfar Adumim, an Israeli village in the Judean Desert that is a focus of cutaneous leishmaniasis, was Phlebotomus papatasi, which was also caught attempting to bite humans. Phlebotomus sergenti, which is rarely seen inside houses, constituted the predominant sand fly species in caves near the village. Leishmania isolates from Ph. sergenti and humans typed as Leishmania tropica. Sand fly and human isolates produced similar small nodular cutaneous lesions in hamsters. Isolates produced excreted factor (EF) of subserotypes A(9) or A(9)B(2), characteristic of L. tropica and reacted with L. tropica-specific monoclonal antibodies. Isoenzyme analysis consigned the strains to the L. tropica zymodemes MON-137 and MON-275. Molecular genetic analyses confirmed the strains were L. tropica and intraspecific microheterogeneity was observed. Genomic fingerprinting using a mini-satellite probe separated the L. tropica strains into two clusters that were not entirely congruent with geographic distribution. These results support the heterogeneous nature of L. tropica and incriminate Ph. sergenti as its vector in this Judean Desert focus.


Assuntos
Insetos Vetores/parasitologia , Leishmania tropica/crescimento & desenvolvimento , Leishmaniose Cutânea/parasitologia , Phlebotomus/parasitologia , Animais , Bioensaio , Cricetinae , DNA de Cinetoplasto/química , DNA de Cinetoplasto/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Clima Desértico , Eletroforese em Gel de Amido , Feminino , Variação Genética , Humanos , Isoenzimas , Israel , Leishmania tropica/enzimologia , Leishmania tropica/genética , Leishmaniose Cutânea/transmissão , Mesocricetus , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , População Rural , Sorotipagem
10.
Folia Parasitol (Praha) ; 50(4): 241-50, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14971592

RESUMO

Leishmania tropica is one of the causative agents of cutaneous leishmaniasis (CL), a disfiguring parasitic disease that recently was found to be viscerotropic. In urban areas it is transmitted from infected individuals by the bite of phlebotomine sand flies to naïve persons (anthroponotic CL). In rural areas animals are thought to be the reservoir, but the full life cycle is still under investigation (zoonotic CL). For many years L. tropica was either confused or merely grouped with L. major while Phlebotomus sergenti was the only proven vector. In recent years new foci have erupted, but few have been investigated. This review describes some of the history, recent findings, epidemiology, potential vectors, and the search for possible reservoir hosts besides man.


Assuntos
Leishmania tropica , Leishmaniose Cutânea , Animais , Reservatórios de Doenças , História do Século XX , Humanos , Insetos Vetores/parasitologia , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/história , Leishmaniose Cutânea/fisiopatologia , Leishmaniose Cutânea/transmissão , Phlebotomus/parasitologia
11.
Vector Borne Zoonotic Dis ; 11(3): 247-58, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20846030

RESUMO

Leishmaniasis is endemic in the Middle East, and both cutaneous and visceral forms are reported from the region ranging from the Levant to Afghanistan. The potential and proven phlebotomine sand fly vectors and reservoir hosts of the Leishmaniases species in Afghanistan, Iran, Iraq, Israel, Jordan, Lebanon, Saudi Arabia, Syria, Turkey, and Yemen are described. This region has seen a movement of populations across the area, due to both military and civilian strife. Refugees, armed forces, and multi-national contractors are particularly at risk to acquire this disease. There has been an upsurge in Leishmaniasis research, especially as new foci are exposed and the need to protect the naïve populations moving into endemic areas becomes a public health priority. New sand fly vectors and animal reservoirs have been discovered while novel control methods are being evaluated. Modern molecular techniques are now being used more routinely and revealing some unusual findings. The aim of this review is to collate the most recent data on the burden of the disease, diagnostic applications, eco-epidemiology of vectors, and reservoir hosts, and how the control projects have been developing in the Middle East.


Assuntos
Reservatórios de Doenças/parasitologia , Doenças Endêmicas , Insetos Vetores/parasitologia , Leishmania/fisiologia , Leishmaniose/epidemiologia , Phlebotomus/parasitologia , Animais , Humanos , Leishmaniose/diagnóstico , Leishmaniose/parasitologia , Leishmaniose/prevenção & controle , Oriente Médio/epidemiologia , Saúde Pública , Zoonoses
13.
PLoS One ; 4(4): e5103, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19337366

RESUMO

BACKGROUND: More than 80% of mammalian protein-coding genes are driven by TATA-less promoters which often show multiple transcriptional start sites (TSSs). However, little is known about the core promoter DNA sequences or mechanisms of transcriptional initiation for this class of promoters. METHODOLOGY/PRINCIPAL FINDINGS: Here we identify a new core promoter element XCPE2 (X core promoter element 2) (consensus sequence: A/C/G-C-C/T-C-G/A-T-T-G/A-C-C/A(+1)-C/T) that can direct specific transcription from the second TSS of hepatitis B virus X gene mRNA. XCPE2 sequences can also be found in human promoter regions and typically appear to drive one of the start sites within multiple TSS-containing TATA-less promoters. To gain insight into mechanisms of transcriptional initiation from this class of promoters, we examined requirements of several general transcription factors by in vitro transcription experiments using immunodepleted nuclear extracts and purified factors. Our results show that XCPE2-driven transcription uses at least TFIIB, either TFIID or free TBP, RNA polymerase II (RNA pol II) and the MED26-containing mediator complex but not Gcn5. Therefore, XCPE2-driven transcription can be carried out by a mechanism which differs from previously described TAF-dependent mechanisms for initiator (Inr)- or downstream promoter element (DPE)-containing promoters, the TBP- and SAGA (Spt-Ada-Gcn5-acetyltransferase)-dependent mechanism for yeast TATA-containing promoters, or the TFTC (TBP-free-TAF-containing complex)-dependent mechanism for certain Inr-containing TATA-less promoters. EMSA assays using XCPE2 promoter and purified factors further suggest that XCPE2 promoter recognition requires a set of factors different from those for TATA box, Inr, or DPE promoter recognition. CONCLUSIONS/SIGNIFICANCE: We identified a new core promoter element XCPE2 that are found in multiple TSS-containing TATA-less promoters. Mechanisms of promoter recognition and transcriptional initiation for XCPE2-driven promoters appear different from previously shown mechanisms for classical promoters that show single "focused" TSSs. Our studies provide insight into novel mechanisms of RNA Pol II transcription from multiple TSS-containing TATA-less promoters.


Assuntos
Regiões Promotoras Genéticas , TATA Box , Transcrição Gênica , Sequência de Bases , Sequência Consenso , DNA , Ensaio de Desvio de Mobilidade Eletroforética , Genoma Humano , Células HeLa , Humanos , RNA Mensageiro/genética , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias/genética
14.
J Biol Chem ; 284(13): 8621-32, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19181665

RESUMO

Nuclear respiratory factor 1 (NRF-1) is one of the key transcriptional activators for nuclear-coded genes involved in mitochondrial biogenesis and function as well as for many housekeeping genes. A transcriptional co-activator PGC-1 and its related family member PRC have previously been shown to interact with NRF-1 and co-activate NRF-1. We show here that NRF-1 can also directly interact with poly(ADP-ribose) polymerase 1 (PARP-1) and co-purify the PARP-1.DNA-PK.Ku80.Ku70.topoisomerase IIbeta-containing protein complex. Our in vitro binding experiments show that DNA-binding/dimerization domain of NRF-1 and the N-terminal half of PARP-1, which contains two Zinc fingers and the auto-modification domain, are responsible for the interaction, and that this interaction occurs with or without PARP-1 poly(ADP-ribosyl)ation (PARylation). DNA-bound NRF-1 can form a complex with PARP-1, suggesting that NRF-1 can recruit the PARP-1.DNA-PK.Ku80.Ku70.topoisomerase IIbeta-containing protein complex to the promoter. PARP-1 can also PARylate the DNA-binding domain of NRF-1 and negatively regulate NRF-1.PARP-1 interaction. Transient transfection and chromatin immunoprecipitation experiments suggest that PARP-1 plays a role during transcriptional activation by NRF-1. Our finding identifies a new aspect of transcriptional regulation used by NRF-1.


Assuntos
Complexos Multiproteicos/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Transcrição Gênica/fisiologia , Animais , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Autoantígeno Ku , Camundongos , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fator 1 Nuclear Respiratório/genética , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Regiões Promotoras Genéticas/fisiologia , Estrutura Terciária de Proteína/fisiologia , Dedos de Zinco/fisiologia
15.
J Mol Biol ; 393(2): 397-408, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19660470

RESUMO

FF domains are small protein-protein interaction modules that have two flanking conserved phenylalanine residues. They are present in proteins involved in transcription, RNA splicing, and signal transduction, and often exist in tandem arrays. Although several individual FF domain structures have been determined by NMR, the tandem nature of most FF domains has not been revealed. Here we report the 2.7-A-resolution crystal structure of the first three FF domains of the human transcription elongation factor CA150. Each FF domain is composed of three alpha-helices and a 3(10) helix between alpha-helix 2 and alpha-helix 3. The most striking feature of the structure is that an FF domain is connected to the next by an alpha-helix that continues from helix 3 to helix 1 of the next. The consequent elongated arrangement allows exposure of many charged residues within the region that can be engaged in interaction with other molecules. Binding studies using a peptide ligand suggest that a specific conformation of the FF domains might be required to achieve higher-affinity binding. Additionally, we explore potential DNA binding of the FF construct used in this study. Overall, we provide the first crystal structure of an FF domain and insights into the tandem nature of the FF domains and suggest that, in addition to protein binding, FF domains might be involved in DNA binding.


Assuntos
Cristalografia por Raios X/métodos , Transativadores/química , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Peptídeos/metabolismo , Ligação Proteica/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição
16.
J Infect Dis ; 197(3): 479-86, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18199036

RESUMO

BACKGROUND: Gliotoxin is a epipolythiodioxopiperazine toxin that is made by the filamentous fungus Aspergillus fumigatus. Gliotoxin has a wide range of effects on metazoan cells in culture, including induction of apoptosis through inhibition of Nf-kappaB, and inhibition of superoxide production by phagocytes. These activities have led to the proposal that gliotoxin contributes to pathogenesis during invasive aspergillosis. We tested this hypothesis by creating isogenic strains of gliotoxin-producing and nonproducing strains. METHODS: We deleted gliP, the gene that encodes the nonribosomal peptide synthetase GliP. GliP catalyzes the first biosynthetic step in the synthesis of gliotoxin. We then tested for gliotoxin production and virulence in different animal models. RESULTS: Deletion of gliP resulted in strains that were wild type for growth, but they did not synthesize gliotoxin. Transformation of gliP deletion mutants with a full copy of gliP restored gliotoxin production. The gliP deletion strain had attenuated virulence in nonneutropenic mice immunosuppressed with corticosteroids, but had normal virulence in neutropenic mice. It also had reduced virulence in a Drosophila melanogaster model. CONCLUSIONS: Gliotoxin only contributes to the virulence of A. fumigatus in nonneutropenic mice and in fruit flies with functional phagocytes. These results suggest that the principal targets of gliotoxin are neutrophils or other phagocytes.


Assuntos
Aspergillus fumigatus/fisiologia , Aspergillus fumigatus/patogenicidade , Gliotoxina/biossíntese , Animais , Aspergillus fumigatus/classificação , Sequência de Bases , Clonagem Molecular , Primers do DNA , Drosophila melanogaster/efeitos dos fármacos , Deleção de Genes , Gliotoxina/toxicidade , Dados de Sequência Molecular , Virulência
17.
Proc Natl Acad Sci U S A ; 104(4): 1189-94, 2007 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-17227857

RESUMO

TFIID is an essential factor required for RNA polymerase II transcription but remains poorly understood because of its intrinsic complexity. Human TAF5, a 100-kDa subunit of general transcription factor TFIID, is an essential gene and plays a critical role in assembling the 1.2 MDa TFIID complex. We report here a structural analysis of the TAF5 protein. Our structure at 2.2-A resolution of the TAF5-NTD2 domain reveals an alpha-helical domain with distant structural similarity to RNA polymerase II CTD interacting factors. The TAF5-NTD2 domain contains several conserved clefts likely to be critical for TFIID complex assembly. Our biochemical analysis of the human TAF5 protein demonstrates the ability of the N-terminal half of the TAF5 gene to form a flexible, extended dimer, a key property required for the assembly of the TFIID complex.


Assuntos
Fatores Associados à Proteína de Ligação a TATA/química , Fator de Transcrição TFIID/química , Cristalografia por Raios X , Dimerização , Humanos , Modelos Moleculares , Conformação Proteica
18.
Proc Natl Acad Sci U S A ; 104(19): 7839-44, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-17483474

RESUMO

TBP-associated factor 4 (TAF4), an essential subunit of the TFIID complex acts as a coactivator for multiple transcriptional regulators, including Sp1 and CREB. However, little is known regarding the structural properties of the TAF4 subunit that lead to the coactivator function. Here, we report the crystal structure at 2.0-A resolution of the human TAF4-TAFH domain, a conserved domain among all metazoan TAF4, TAF4b, and ETO family members. The hTAF4-TAFH structure adopts a completely helical fold with a large hydrophobic groove that forms a binding surface for TAF4 interacting factors. Using peptide phage display, we have characterized the binding preference of the hTAF4-TAFH domain for a hydrophobic motif, DPsiPsizetazetaPsiPhi, that is present in a number of nuclear factors, including several important transcriptional regulators with roles in activating, repressing, and modulating posttranslational modifications. A comparison of the hTAF4-TAFH structure with the homologous ETO-TAFH domain reveals several critical residues important for hTAF4-TAFH target specificity and suggests that TAF4 has evolved in response to the increased transcriptional complexity of metazoans.


Assuntos
Fatores Associados à Proteína de Ligação a TATA/química , Fator de Transcrição TFIID/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/química , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Fatores Associados à Proteína de Ligação a TATA/fisiologia , Fator de Transcrição TFIID/fisiologia
19.
J Virol ; 81(22): 12272-84, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17804496

RESUMO

Rotavirus, the major pathogen of infantile gastroenteritis, carries a nonstructural protein, NSP2, essential for viroplasm formation and genome replication/packaging. In addition to RNA-binding and helix-destabilizing properties, NSP2 exhibits nucleoside triphosphatase activity. A conserved histidine (H225) functions as the catalytic residue for this enzymatic activity, and mutation of this residue abrogates genomic double-stranded RNA synthesis without affecting viroplasm formation. To understand the structural basis of the phosphatase activity of NSP2, we performed crystallographic analyses of native NSP2 and a functionally defective H225A mutant in the presence of nucleotides. These studies showed that nucleotides bind inside a cleft between the two domains of NSP2 in a region that exhibits structural similarity to ubiquitous cellular HIT (histidine triad) proteins. Only minor conformational alterations were observed in the cleft upon nucleotide binding and hydrolysis. This hydrolysis involved the formation of a stable phosphohistidine intermediate. These observations, reminiscent of cellular nucleoside diphosphate (NDP) kinases, prompted us to investigate whether NSP2 exhibits phosphoryl-transfer activity. Bioluminometric assay showed that NSP2 exhibits an NDP kinase-like activity that transfers the bound phosphate to NDPs. However, NSP2 is distinct from the highly conserved cellular NDP kinases in both its structure and catalytic mechanism, thus making NSP2 a potential target for antiviral drug design. With structural similarities to HIT proteins, which are not known to exhibit NDP kinase activity, NSP2 represents a unique example among structure-activity relationships. The newly observed phosphoryl-transfer activity of NSP2 may be utilized for homeostasis of nucleotide pools in viroplasms during genome replication.


Assuntos
Núcleosídeo-Difosfato Quinase/química , Nucleotídeos/química , Proteínas de Ligação a RNA/química , Proteínas não Estruturais Virais/química , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Domínio Catalítico , Humanos , Cinética , Dados de Sequência Molecular , Núcleosídeo-Difosfato Quinase/genética , Núcleosídeo-Difosfato Quinase/fisiologia , Fosforilação , Conformação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Rotavirus/enzimologia , Rotavirus/fisiologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/fisiologia , Replicação Viral
20.
Nat Struct Biol ; 10(8): 622-8, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12872159

RESUMO

The C-terminal binding protein 1 (CtBP) is a ubiquitous corepressor linking the recruitment of DNA- and histone-modifying proteins to sequence-specific DNA-binding proteins and facilitating gene regulation during development and oncogenesis. We describe here the binding, phosphorylation and functional regulation of CtBP by the p21-activated kinase 1 (Pak1). Pak1 phosphorylates CtBP selectively on Ser158 within a putative regulatory loop, triggering CtBP cellular redistribution and blocking CtBP corepressor functions. A S158A substitution in CtBP or Pak1 knockdown by short interference RNA blocked CtBP phosphorylation, redistribution and attenuation of CtBP corepressor functions in reporter and chromatin assays. In the presence of NADH, Pak1 superphosphorylates CtBP and inhibits CtBP dehydrogenase activity, suggesting that preferential phosphorylation of active CtBP may alter secondary structures and influence both enzymatic and corepressor functions. Pak1 regulation of CtBP represents a new model of corepressor regulation whereby cellular signaling cascades may influence gene expression in mammalian cells.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Fosfoproteínas/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Oxirredutases do Álcool , Substituição de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Técnicas In Vitro , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Serina/química , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido , Quinases Ativadas por p21
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA