Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Clin Invest ; 54(1): e14077, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37642230

RESUMO

BACKGROUND: Circulating endotoxins could result from bacterial digestive translocation during sepsis, thus contributing to uncontrolled systemic inflammation, leading in turn to organ dysfunction. We addressed this issue in the setting of severe pneumococcal pneumonia. METHODS: Endotoxemia was measured in a clinically relevant rabbit model of ventilated pneumococcal pneumonia and in 110 patients with bacteraemic pneumonia, using a patented mass spectrometry (LC-MS/MS) method for detection of 3-OH fatty acids (C10, C12, C14, C16 and C18), which are molecules bound to the lipid A motif of LPS. RESULTS: Whereas higher levels of systemic inflammation and organ dysfunctions were found, there was no significant difference in lipopolysaccharide concentrations when infected rabbits were compared to non-infected ones, or when patients were compared to healthy volunteers. CONCLUSIONS: Seemingly, endotoxins do not drive the overwhelming inflammation associated with severe forms of pneumococcal pneumonia.


Assuntos
Endotoxemia , Pneumonia Pneumocócica , Humanos , Animais , Coelhos , Pneumonia Pneumocócica/diagnóstico , Cromatografia Líquida , Espectrometria de Massas em Tandem , Inflamação , Lipopolissacarídeos , Endotoxinas
2.
J Clin Med ; 12(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38137578

RESUMO

The emergence of the new SARS-CoV-2 in December 2019 caused a worldwide pandemic of the resultant disease, COVID-19. There was a massive surge in admissions to intensive care units (ICU), notably of patients with hypoxaemic acute respiratory failure. In these patients, optimal oxygen therapy was crucial. In this article, we discuss tracheal intubation to provide mechanical ventilation in patients with hypoxaemic acute respiratory failure due to SARS-CoV-2. We first describe the pathophysiology of respiratory anomalies leading to acute respiratory distress syndrome (ARDS) due to infection with SARS-CoV-2, and then briefly review management, focusing particularly on the ventilation strategy. Overall, the ventilatory management of ARDS due to SARS-CoV-2 infection is largely the same as that applied in ARDS from other causes, and lung-protective ventilation is recommended. The difference lies in the initial clinical presentation, with profound hypoxaemia often observed concomitantly with near-normal pulmonary compliance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA