Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 117(2): 305-317, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31654402

RESUMO

According to the intrinsic plasticity of stem cells, controlling their fate is a critical issue in cell-based therapies. Recently, a growing body of evidence has suggested that substrate stiffness can affect the fate decisions of various stem cells. Epidermal neural crest stem cells as one of the main neural crest cell derivatives hold great promise for cell therapies due to presenting a high level of plasticity. This study was conducted to define the influence of substrate stiffness on the lineage commitment of these cells. Here, four different polyacrylamide hydrogels with elastic modulus in the range of 0.7-30 kPa were synthesized and coated with collagen and stem cells were seeded on them for 24 hr. The obtained data showed that cells can attach faster to hydrogels compared with culture plate and cells on <1 kPa stiffness show more neuronal-like morphology as they presented several branches and extended longer neurites over time. Moreover, the transcription of actin downregulated on all hydrogels, while the expression of Nestin, Tubulin, and PDGFR-α increased on all of them and SOX-10 and doublecortin gene expression were higher only on <1 kPa. Also, it was revealed that soft hydrogels can enhance the expression of glial cell line-derived neurotrophic factor, neurotrophin-3, and vascular endothelial growth factor in these stem cells. On the basis of the results, these cells can respond to the substrate stiffness in the short term culture and soft hydrogels can alter their morphology and gene expression. These findings suggested that employing proper substrate stiffness might result in cells with more natural profiles similar to the nervous system and superior usefulness in therapeutic applications.


Assuntos
Técnicas de Cultura de Células/métodos , Meios de Cultura/farmacologia , Módulo de Elasticidade/fisiologia , Crista Neural/citologia , Células-Tronco , Resinas Acrílicas , Animais , Células Cultivadas , Proteína Duplacortina , Expressão Gênica/efeitos dos fármacos , Hidrogéis , Masculino , Ratos , Ratos Wistar , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/fisiologia
2.
J Orthop ; 56: 82-86, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38800588

RESUMO

The latest studies agree that meniscal tears that require surgery should be repaired whenever possible to avoid early-onset osteoarthritis secondary to meniscectomy. Unfortunately, there are several limitations associated with meniscal sutures, making it difficult to put into practice the theory behind the concept of saving the meniscus. Meanwhile, there is an exponential growth in the use of tissue adhesives for surgery, but finding one suited to meniscal repair remains a struggle. This review has two main goals (1) to compile the various bioadhesives used in this field and (2) to list the criteria for an ideal meniscal bioadhesive. The review was conducted in PubMed, Google Scholar, and Web of Science in November 2023 without date restrictions. The inclusion criteria were: Studies published in English and focusing on meniscal repair using bioadhesives. The exclusion criteria were: Studies published in languages other than English. Adhesives used in combination with sutures, as the aim was to determine the adhesive's capabilities for meniscal repair alone. Synthetic adhesives such as polycyanoacrylates, polyethylene glycol, polyurethanes, and polyesters. Among the 11 bioadhesives found, fibrin is the only one that has been studied in humans. There are advantages and disadvantages to all the bioadhesives identified but none that fully meet the requirements for meniscal repair. The anatomy of meniscal tissue is complex and poses unique challenges that are compounded by arthroscopic stresses. The future of meniscal repair probably lies in combining the advantages of several bioadhesives, and this area should be the focus of future research.

3.
Carbohydr Polym ; 281: 119045, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074118

RESUMO

Biomaterials are considered a substantial building block for tissue engineering, regenerative medicine, and drug delivery. Despite using both organic and inorganic biomaterials in these fields, polymeric biomaterials are the most promising candidates because of their versatility in their characteristics (i.e., physical, chemical, and biological). Mainly, naturally-derived polymers are of great interest due to their inherent bioactivity. Derived from red seaweeds, carrageenan (CG) is a naturally-occurring polysaccharide that has shown promise as a biopolymer for various biomedical applications. CG possesses unique characteristics, including antiviral, immunomodulatory, anticoagulant, antioxidant, and anticancer properties, making it an appealing candidate for tissue engineering and drug delivery research. This review summarizes the versatile properties of CG and the chemical modifications applied to it. In addition, it highlights some of the most promising research that takes advantage of CG to formulate and fabricate scaffolds and/or drug delivery systems with high potential for tissue repair and disease curing.


Assuntos
Medicina Regenerativa , Engenharia Tecidual , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Carragenina/química , Polímeros , Alicerces Teciduais/química
4.
Adv Mater Technol ; 7(11)2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38044954

RESUMO

Cardiovascular diseases (CVDs) are known as the major cause of death worldwide. In spite of tremendous advancements in medical therapy, the gold standard for CVD treatment is still transplantation. Tissue engineering, on the other hand, has emerged as a pioneering field of study with promising results in tissue regeneration using cells, biological cues, and scaffolds. Three-dimensional (3D) bioprinting is a rapidly growing technique in tissue engineering because of its ability to create complex scaffold structures, encapsulate cells, and perform these tasks with precision. More recently, 3D bioprinting has made its debut in cardiac tissue engineering, and scientists are investigating this technique for development of new strategies for cardiac tissue regeneration. In this review, the fundamentals of cardiac tissue biology, available 3D bioprinting techniques and bioinks, and cells implemented for cardiac regeneration are briefly summarized and presented. Afterwards, the pioneering and state-of-the-art works that have utilized 3D bioprinting for cardiac tissue engineering are thoroughly reviewed. Finally, regulatory pathways and their contemporary limitations and challenges for clinical translation are discussed.

5.
Biomater Adv ; 138: 212916, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35913255

RESUMO

Current drug screening approaches are incapable of fully detecting and characterizing drug effectiveness and toxicity of human cardiomyocytes. The pharmaceutical industry uses mathematical models, cell lines, and in vivo models. Many promising drugs are abandoned early in development, and some cardiotoxic drugs reach humans leading to drug recalls. Therefore, there is an unmet need to have more reliable and predictive tools for drug discovery and screening applications. Biofabrication of functional cardiac tissues holds great promise for developing a faithful 3D in vitro disease model, optimizing drug screening efficiencies enabling precision medicine. Different fabrication techniques including molding, pull spinning and 3D bioprinting were used to develop tissue-engineered heart chambers. The big challenge is to effectively organize cells into tissue with structural and physiological features resembling native tissues. Some advancements have been made in engineering miniaturized heart chambers that resemble a living pump for drug screening and disease modeling applications. Here, we review the currently developed tissue-engineered heart chambers and discuss challenges and prospects.


Assuntos
Impressão Tridimensional , Engenharia Tecidual , Descoberta de Drogas , Humanos , Miócitos Cardíacos , Tecnologia , Engenharia Tecidual/métodos
6.
Ind Eng Chem Res ; 60(48): 17348-17364, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-35317347

RESUMO

Most components in avian eggs, offering a natural and environmentally friendly source of raw materials, hold great potential in tissue engineering. An avian egg consists of several beneficial elements: the protective eggshell, the eggshell membrane, the egg white (albumen), and the egg yolk (vitellus). The eggshell is mostly composed of calcium carbonate and has intrinsic biological properties that stimulate bone repair. It is a suitable precursor for the synthesis of hydroxyapatite and calcium phosphate, which are particularly relevant for bone tissue engineering. The eggshell membrane is a thin protein-based layer with a fibrous structure and is constituted of several valuable biopolymers, such as collagen and hyaluronic acid, that are also found in the human extracellular matrix. As a result, the eggshell membrane has found several applications in skin tissue repair and regeneration. The egg white is a protein-rich material that is under investigation for the design of functional protein-based hydrogel scaffolds. The egg yolk, mostly composed of lipids but also diverse essential nutrients (e.g., proteins, minerals, vitamins), has potential applications in wound healing and bone tissue engineering. This review summarizes the advantages and status of each egg component in tissue engineering and regenerative medicine, but also covers their current limitations and future perspectives.

7.
Int J Pharm ; 583: 119413, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32389791

RESUMO

Treatment of diabetic, chronic, and full-thickness wounds is a challenge as these injuries usually lead to infections that cause delayed and inappropriate healing. Therefore, fabrication of skin scaffolds with prolonged antibacterial properties are of great interest. Due to this demand, bilayered nanofibrous scaffolds were fabricated based on polycaprolactone and gelatin. The top layer of these scaffolds contained amoxicillin as a model drug and the bottom layer was loaded with zinc oxide nanoparticles to accelerate wound healing. Several characterization techniques including FTIR, SEM, swelling, tensile test, in vitro degradation, drug release, antibacterial activity, and MTT assay were used to assess physical, mechanical, and biological properties of produced nanofibers. SEM results demonstrated that bilayered scaffolds have smooth bead-free microstructures while in vitro release test showed that samples have a sustained release for amoxicillin up to 144 h (tested time). Disk diffusion assessment confirmed the potency of scaffolds for hindering bacterial growth while results of cytotoxicity evaluation revealed that scaffolds could effectively accelerate cell proliferation. Finally, in vivo tests on full-thickness rat models revealed that fabricated nanofibers accelerate wound contraction, increase collagen deposition and angiogenesis, and prevent scar formation. Altogether, results showed that fabricated scaffolds are promising candidates for treatment of full-thickness wounds.


Assuntos
Amoxicilina/administração & dosagem , Antibacterianos/administração & dosagem , Portadores de Fármacos , Gelatina/química , Nanofibras , Poliésteres/química , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/tratamento farmacológico , Óxido de Zinco/administração & dosagem , Amoxicilina/química , Animais , Antibacterianos/química , Proliferação de Células/efeitos dos fármacos , Preparações de Ação Retardada , Modelos Animais de Doenças , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Ratos Sprague-Dawley , Pele/lesões , Resistência à Tração , Ferimentos e Lesões/patologia , Óxido de Zinco/química
8.
Biomater Sci ; 8(15): 4073-4094, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32539055

RESUMO

A number of challenges in skin grafting for wound healing have drawn researchers to focus on skin tissue engineering as an alternative solution. The core idea of tissue engineering is to use scaffolds, cells, and/or bioactive molecules to help the skin to properly recover from injuries. Over the past decades, the field has significantly evolved, developing various strategies to accelerate and improve skin regeneration. However, there are still several concerns that should be addressed. Among these limitations, vascularization is known as a critical challenge that needs thorough consideration. Delayed wound healing of large defects results in an insufficient vascular network and ultimately ischemia. Recent advances in the field of tissue engineering paved the way to improve vascularization of skin substitutes. Broadly, these solutions can be classified into two categories as (1) use of growth factors, reactive oxygen species-inducing nanoparticles, and stem cells to promote angiogenesis, and (2) in vitro or in vivo prevascularization of skin grafts. This review summarizes the state-of-the-art approaches, their limitations, and highlights the latest advances in therapeutic vascularization strategies for skin tissue engineering.


Assuntos
Pele Artificial , Engenharia Tecidual , Neovascularização Fisiológica , Pele , Transplante de Pele , Alicerces Teciduais , Cicatrização
9.
J Mech Behav Biomed Mater ; 88: 395-405, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30212687

RESUMO

This study focuses on the evaluation and modification of polyurethane (PU) membranes containing organic and inorganic nanoparticles for potential use as a wound dressing. For the purpose of PU nanocomposite preparation, chitosan (CS) was converted into nanoparticles by the ionic-gelation method to improve its blending capability with the PU matrix. These CS nanoparticles (nano-CS) were obtained as a hydrophilic organic filler with different contents and were utilized along with inorganic titanium dioxide (TiO2) nanoparticles in the nanocomposite membrane preparation. The membranes were prepared using phase inversion technique and their microstructure was controlled by manipulating the solvent non-solvent exchange rate. Obtained results demonstrate that addition of polymer solvent to nonsolvent induced a microstructure alteration from finger-like to sponge-like, which is more suitable for fluid uptake and consequently more useful for wound dressing applications. Similar results were obtained by introduction of nanoparticles to membranes. Due to the polar nature of nanoparticles and their effects on PU structure, prepared membranes showed 71.5% improve in swelling when compared to neat PU. Moreover, the reinforcement effect of nanoparticles caused an 18.94% increase in ultimate tensile strength in comparison with bare PU film, while elongation at break was not affected considerably. In addition, prepared PU nanocomposite films showed suitable antibacterial activity of 69% against Staphylococcus aureus and did not show any toxicity to human fibroblast cells. Based on these results, simultaneous use of TiO2 and chitosan nanoparticles can improve both physical and antibacterial properties of PU as an ideal wound dressing.


Assuntos
Bandagens , Nanocompostos/química , Nanopartículas/química , Poliuretanos/química , Titânio/química , Cicatrização/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Bandagens/microbiologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Quitosana/química , Humanos , Teste de Materiais , Fenômenos Mecânicos , Membranas Artificiais , Vapor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA