Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Mol Cell ; 65(1): 66-77, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27939944

RESUMO

During Caenorhabditis elegans oocyte meiosis, a multi-protein ring complex (RC) localized between homologous chromosomes, promotes chromosome congression through the action of the chromokinesin KLP-19. While some RC components are known, the mechanism of RC assembly has remained obscure. We show that SUMO E3 ligase GEI-17/PIAS is required for KLP-19 recruitment to the RC, and proteomic analysis identified KLP-19 as a SUMO substrate in vivo. In vitro analysis revealed that KLP-19 is efficiently sumoylated in a GEI-17-dependent manner, while GEI-17 undergoes extensive auto-sumoylation. GEI-17 and another RC component, the kinase BUB-1, contain functional SUMO interaction motifs (SIMs), allowing them to recruit SUMO modified proteins, including KLP-19, into the RC. Thus, dynamic SUMO modification and the presence of SIMs in RC components generate a SUMO-SIM network that facilitates assembly of the RC. Our results highlight the importance of SUMO-SIM networks in regulating the assembly of dynamic protein complexes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Posicionamento Cromossômico , Segregação de Cromossomos , Cinesinas/metabolismo , Ligases/metabolismo , Meiose , Oócitos/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Feminino , Genótipo , Cinesinas/genética , Ligases/genética , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fatores de Tempo , Ubiquitina-Proteína Ligases/genética
2.
Mol Cell ; 53(6): 880-92, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24656128

RESUMO

Dimeric RING E3 ligases interact with protein substrates and conformationally restrain the ubiquitin-E2-conjugating enzyme thioester complex such that it is primed for catalysis. RNF4 is an E3 ligase containing an N-terminal domain that binds its polySUMO substrates and a C-terminal RING domain responsible for dimerization. To investigate how RNF4 activity is controlled, we increased polySUMO substrate concentration by ablating expression of SUMO protease SENP6. Accumulation of SUMO chains in vivo leads to ubiquitin-mediated proteolysis of RNF4. In vitro we demonstrate that at concentrations equivalent to those found in vivo RNF4 is predominantly monomeric and inactive as an ubiquitin E3 ligase. However, in the presence of SUMO chains, RNF4 is activated by dimerization, leading to both substrate ubiquitylation and autoubiquitylation, responsible for degradation of RNF4. Thus the ubiquitin E3 ligase activity of RNF4 is directly linked to the availability of its polySUMO substrates.


Assuntos
Cisteína Endopeptidases/genética , Regulação da Expressão Gênica , Proteínas Nucleares/genética , Multimerização Proteica , Proteína SUMO-1/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Fatores de Transcrição/genética , Sítios de Ligação , Linhagem Celular Tumoral , Cisteína Endopeptidases/metabolismo , Humanos , Microscopia de Fluorescência , Proteínas Nucleares/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína SUMO-1/metabolismo , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação
3.
J Cell Sci ; 132(14)2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31243051

RESUMO

Oocyte meiotic spindles in most species lack centrosomes and the mechanisms that underlie faithful chromosome segregation in acentrosomal meiotic spindles are not well understood. In C. elegans oocytes, spindle microtubules exert a poleward force on chromosomes that is dependent on the microtubule-stabilising protein CLS-2, the orthologue of the mammalian CLASP proteins. The checkpoint kinase BUB-1 and CLS-2 localise in the central spindle and display a dynamic localisation pattern throughout anaphase, but the signals regulating their anaphase-specific localisation remains unknown. We have shown previously that SUMO regulates BUB-1 localisation during metaphase I. Here, we found that SUMO modification of BUB-1 is regulated by the SUMO E3 ligase GEI-17 and the SUMO protease ULP-1. SUMO and GEI-17 are required for BUB-1 localisation between segregating chromosomes during early anaphase I. We also show that CLS-2 is subject to SUMO-mediated regulation; CLS-2 precociously localises in the midbivalent when either SUMO or GEI-17 are depleted. Overall, we provide evidence for a novel, SUMO-mediated control of protein dynamics during early anaphase I in oocytes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Segregação de Cromossomos , Meiose , Oócitos/citologia , Oócitos/metabolismo , Sumoilação , Anáfase , Animais , Modelos Biológicos , Transporte Proteico , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fuso Acromático/metabolismo
4.
Nature ; 489(7414): 115-20, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22842904

RESUMO

Ubiquitin modification is mediated by a large family of specificity determining ubiquitin E3 ligases. To facilitate ubiquitin transfer, RING E3 ligases bind both substrate and a ubiquitin E2 conjugating enzyme linked to ubiquitin via a thioester bond, but the mechanism of transfer has remained elusive. Here we report the crystal structure of the dimeric RING domain of rat RNF4 in complex with E2 (UbcH5A) linked by an isopeptide bond to ubiquitin. While the E2 contacts a single protomer of the RING, ubiquitin is folded back onto the E2 by contacts from both RING protomers. The carboxy-terminal tail of ubiquitin is locked into an active site groove on the E2 by an intricate network of interactions, resulting in changes at the E2 active site. This arrangement is primed for catalysis as it can deprotonate the incoming substrate lysine residue and stabilize the consequent tetrahedral transition-state intermediate.


Assuntos
Biocatálise , Proteínas Nucleares/química , Fatores de Transcrição/química , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina/metabolismo , Dedos de Zinco , Animais , Domínio Catalítico , Cristalografia por Raios X , Humanos , Hidrólise , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina/química , Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
5.
Biochem J ; 466(3): 489-98, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25489924

RESUMO

Modification of proteins with ubiquitin (Ub) occurs through a variety of topologically distinct Ub linkages, including Ube2W-mediated monoubiquitylation of N-terminal alpha amines to generate peptide-linked linear mono-Ub fusions. Protein ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs), many of which show striking preference for particular Ub linkage types. Here, we have screened for DUBs that preferentially cleave N-terminal Ub from protein substrates but do not act on Ub homopolymers. We show that members of the Ub C-terminal hydrolase (UCH) family of DUBs demonstrate this preference for N-terminal deubiquitylating activity as they are capable of cleaving N-terminal Ub from SUMO2 and Ube2W, while displaying no activity against any of the eight Ub linkage types. Surprisingly, this ability to cleave Ub from SUMO2 was 100 times more efficient for UCH-L3 when we deleted the unstructured N-terminus of SUMO2, demonstrating that UCH enzymes can cleave Ub from structured proteins. However, UCH-L3 could also cleave chemically synthesized isopeptide-linked Ub from lysine 11 (K11) of SUMO2 with similar efficiency, demonstrating that UCH DUB activity is not limited to peptide-linked Ub. These findings advance our understanding of the specificity of the UCH family of DUBs, which are strongly implicated in cancer and neurodegeneration but whose substrate preference has remained unclear. In addition, our findings suggest that the reversal of Ube2W-mediated N-terminal ubiquitylation may be one physiological role of UCH DUBs in vivo.


Assuntos
Proteínas de Escherichia coli/metabolismo , Polímeros/metabolismo , Ubiquitina Tiolesterase/metabolismo , Proteínas de Escherichia coli/química , Polímeros/química , Estrutura Terciária de Proteína , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitina Tiolesterase/química , Ubiquitinação/fisiologia
6.
Proc Natl Acad Sci U S A ; 110(45): 18168-73, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24145437

RESUMO

The tumor suppressor VHL (von Hippel-Lindau) protein is a substrate receptor for Ubiquitin Cullin Ring Ligase complexes (CRLs), containing a BC-box domain that associates to the adaptor Elongin B/C. VHL targets hypoxia-inducible factor 1α to proteasome-dependent degradation. Gam1 is an adenoviral protein, which also possesses a BC-box domain that interacts with the host Elongin B/C, thereby acting as a viral substrate receptor. Gam1 associates with both Cullin2 and Cullin5 to form CRL complexes targeting the host protein SUMO enzyme SAE1 for proteasomal degradation. We show that Gam1 protein expression induces VHL protein degradation leading to hypoxia-inducible factor 1α stabilization and induction of its downstream targets. We also characterize the CRL-dependent mechanism that drives VHL protein degradation via proteasome. Interestingly, expression of Suppressor of Cytokine Signaling (SOCS) domain-containing viral proteins and cellular BC-box proteins leads to VHL protein degradation, in a SOCS domain-containing manner. Our work underscores the exquisite ability of viral domains to uncover new regulatory mechanisms by hijacking key cellular proteins.


Assuntos
Proteólise , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Linhagem Celular Tumoral , Proteínas Culina/genética , Proteínas Culina/metabolismo , Primers do DNA/genética , Elonguina , Técnicas de Silenciamento de Genes , Humanos , Immunoblotting , Imunoprecipitação , Luciferases , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase em Tempo Real , Proteína 1 Supressora da Sinalização de Citocina , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/fisiologia
7.
J Virol ; 88(11): 6076-92, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24623443

RESUMO

UNLABELLED: Promyelocytic leukemia nuclear bodies (PML-NBs) are nuclear structures that accumulate intrinsic host factors to restrict viral infections. To ensure viral replication, these must be limited by expression of viral early regulatory proteins that functionally inhibit PML-NB-associated antiviral effects. To benefit from the activating capabilities of Sp100A and simultaneously limit repression by Sp100B, -C, and -HMG, adenoviruses (Ads) employ several features to selectively and individually target these isoforms. Ads induce relocalization of Sp100B, -C, and -HMG from PML-NBs prior to association with viral replication centers. In contrast, Sp100A is kept at the PML tracks that surround the newly formed viral replication centers as designated sites of active transcription. We concluded that the host restriction factors Sp100B, -C, and -HMG are potentially inactivated by active displacement from these sites, whereas Sp100A is retained to amplify Ad gene expression. Ad-dependent loss of Sp100 SUMOylation is another crucial part of the virus repertoire to counteract intrinsic immunity by circumventing Sp100 association with HP1, therefore limiting chromatin condensation. We provide evidence that Ad selectively counteracts antiviral responses and, at the same time, benefits from PML-NB-associated components which support viral gene expression by actively recruiting them to PML track-like structures. Our findings provide insights into novel strategies for manipulating transcriptional regulation to either inactivate or amplify viral gene expression. IMPORTANCE: We describe an adenoviral evasion strategy that involves isoform-specific and active manipulation of the PML-associated restriction factor Sp100. Recently, we reported that the adenoviral transactivator E1A targets PML-II to efficiently activate viral transcription. In contrast, the PML-associated proteins Daxx and ATRX are inhibited by early viral factors. We show that this concept is more intricate and significant than originally believed, since adenoviruses apparently take advantage of specific PML-NB-associated proteins and simultaneously inhibit antiviral measures to maintain the viral infectious program. Specifically, we observed Ad-induced relocalization of the Sp100 isoforms B, C, and HMG from PML-NBs juxtaposed with viral replication centers. In contrast, Sp100A is retained at Ad-induced PML tracks that surround the newly formed viral replication centers, acting as designated sites of active transcription. The host restriction factors Sp100B, -C, and -HMG are potentially inactivated by active displacement from these sites, whereas Sp100A is retained to amplify Ad gene expression.


Assuntos
Infecções por Adenovirus Humanos/imunologia , Adenovírus Humanos/metabolismo , Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Regulação Viral da Expressão Gênica/genética , Imunidade Inata/imunologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adenovírus Humanos/genética , Linhagem Celular , Primers do DNA/genética , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Immunoblotting , Hibridização In Situ , Luciferases , Proteína da Leucemia Promielocítica , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sumoilação
8.
J Cell Sci ; 125(Pt 15): 3630-5, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22505616

RESUMO

The coordination of signalling pathways within the cell is vital for normal human development and post-natal tissue homeostasis. Gene expression and function is therefore tightly controlled at a number of levels. We investigated the role that post-translational modifications play during human hepatocyte differentiation. In particular, we examined the role of the small ubiquitin-like modifier (SUMO) proteins in this process. We used a human embryonic stem cell (hESC)-based model of hepatocyte differentiation to follow changes in protein SUMOylation. Moreover, to confirm the results derived from our cell-based system, we performed in vitro conjugation assays to characterise SUMO modification of a key liver-enriched transcription factor, HNF4α. Our analyses indicate that SUMOylation plays an important role during hepatocellular differentiation and this is mediated, in part, through regulation of the stability of HNF4α in a ubiquitin-dependent manner. Our study provides a better understanding of SUMOylation during human hepatocyte differentiation and maturation. Moreover, we believe the results will stimulate interest in the differentiation and phenotypic regulation of other somatic cell types.


Assuntos
Fator 4 Nuclear de Hepatócito/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Domínio Catalítico , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fator 4 Nuclear de Hepatócito/biossíntese , Fator 4 Nuclear de Hepatócito/genética , Humanos , Proteínas Nucleares/metabolismo , Estresse Oxidativo/fisiologia , Estabilidade Proteica , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ubiquitinação
9.
Biochem J ; 453(1): 137-45, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23560854

RESUMO

The covalent attachment of the protein ubiquitin to intracellular proteins by a process known as ubiquitylation regulates almost all major cellular systems, predominantly by regulating protein turnover. Ubiquitylation requires the co-ordinated action of three enzymes termed E1, E2 and E3, and typically results in the formation of an isopeptide bond between the C-terminal carboxy group of ubiquitin and the ϵ-amino group of a target lysine residue. However, ubiquitin is also known to conjugate to the thiol of cysteine residue side chains and the α-amino group of protein N-termini, although the enzymes responsible for discrimination between different chemical groups have not been defined. In the present study, we show that Ube2W (Ubc16) is an E2 ubiquitin-conjugating enzyme with specific protein N-terminal mono-ubiquitylation activity. Ube2W conjugates ubiquitin not only to its own N-terminus, but also to that of the small ubiquitin-like modifier SUMO (small ubiquitin-related modifier) in a manner dependent on the SUMO-targeted ubiquitin ligase RNF4 (RING finger protein 4). Furthermore, N-terminal mono-ubiquitylation of SUMO-2 primes it for poly-ubiquitylation by the Ubc13-UEV1 (ubiquitin-conjugating enzyme E2 variant 1) heterodimer, showing that N-terminal ubiquitylation regulates protein fate. The description in the present study is the first of an E2-conjugating enzyme with N-terminal ubiquitylation activity, and highlights the importance of E2 enzymes in the ultimate outcome of E3-mediated ubiquitylation.


Assuntos
Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
10.
J Cell Biol ; 222(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36880596

RESUMO

Acute Promyelocytic Leukemia is caused by expression of the oncogenic Promyelocytic Leukemia (PML)-Retinoic Acid Receptor Alpha (RARA) fusion protein. Therapy with arsenic trioxide results in degradation of PML-RARA and PML and cures the disease. Modification of PML and PML-RARA with SUMO and ubiquitin precedes ubiquitin-mediated proteolysis. To identify additional components of this pathway, we performed proteomics on PML bodies. This revealed that association of p97/VCP segregase with PML bodies is increased after arsenic treatment. Pharmacological inhibition of p97 altered the number, morphology, and size of PML bodies, accumulated SUMO and ubiquitin modified PML and blocked arsenic-induced degradation of PML-RARA and PML. p97 localized to PML bodies in response to arsenic, and siRNA-mediated depletion showed that p97 cofactors UFD1 and NPLOC4 were critical for PML degradation. Thus, the UFD1-NPLOC4-p97 segregase complex is required to extract poly-ubiquitinated, poly-SUMOylated PML from PML bodies, prior to degradation by the proteasome.


Assuntos
Arsênio , Leucemia Promielocítica Aguda , Proteína com Valosina , Humanos , Arsênio/uso terapêutico , Citoplasma , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Complexo de Endopeptidases do Proteassoma , Fatores de Transcrição/genética , Ubiquitina , Proteína com Valosina/metabolismo , Proteínas de Fusão Oncogênica , Sumoilação
11.
Biochem J ; 434(2): 309-19, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21143188

RESUMO

The TRIM (tripartite motif) family of proteins is characterized by the presence of the tripartite motif module, composed of a RING domain, one or two B-box domains and a coiled-coil region. TRIM proteins are involved in many cellular processes and represent the largest subfamily of RING-containing putative ubiquitin E3 ligases. Whereas their role as E3 ubiquitin ligases has been presumed, and in several cases established, little is known about their specific interactions with the ubiquitin-conjugating E2 enzymes or UBE2s. In the present paper, we report a thorough screening of interactions between the TRIM and UBE2 families. We found a general preference of the TRIM proteins for the D and E classes of UBE2 enzymes, but we also revealed very specific interactions between TRIM9 and UBE2G2, and TRIM32 and UBE2V1/2. Furthermore, we demonstrated that the TRIM E3 activity is only manifest with the UBE2 with which they interact. For most specific interactions, we could also observe subcellular co-localization of the TRIM involved and its cognate UBE2 enzyme, suggesting that the specific selection of TRIM-UBE2 pairs has physiological relevance. Our findings represent the basis for future studies on the specific reactions catalysed by the TRIM E3 ligases to determine the fate of their targets.


Assuntos
Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Células Cultivadas , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
12.
J Proteome Res ; 10(10): 4869-75, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21830832

RESUMO

Quantitative mass spectrometry-based proteomics is a vital tool in modern life science research. In contrast to the popularity of approaches for relative protein quantitation, the widespread use of absolute quantitation has been hampered by inefficient and expensive production of labeled protein standards. To optimize production of isotopically labeled standards, we genetically modified a commonly employed protein expression Escherichia coli strain, BL21 (DE3), to construct an auxotroph for arginine and lysine. This bacterial strain allows low-cost, high-level expression of fully labeled proteins with no conversion of labeled arginine to proline. In combination with a fluorescence-based quantitation of standards and nontargeted LC-MS/MS analysis of unfractionated total cell lysates, this strain was used to determine the copy number of a post-translational modifier, small ubiquitin-like modifier (SUMO-2), in HeLa, human sperm, and chronic lymphocytic leukemia cells. By streamlining and improving the generation of labeled standards, this production system increases the breadth of absolute quantitation by mass spectrometry and will facilitate a far wider uptake of this important technique than previously possible.


Assuntos
Dosagem de Genes , Espectrometria de Massas/métodos , Proteômica/métodos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/sangue , Biomarcadores Tumorais/metabolismo , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HeLa , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Proteoma , Espermatozoides/metabolismo
13.
Mol Cell Biol ; 27(15): 5554-64, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17548468

RESUMO

During the execution of differentiation programs, lineage-specific transcription factors are in competition with antagonistic factors that drive progenitor proliferation. Thus, the myeloid transcription factor MafB promotes macrophage differentiation of myeloid progenitors, but a constitutively active Myb transcription factor (v-Myb) can maintain proliferation and block differentiation. Little is known, however, about the regulatory mechanisms that control such competing activities. Here we report that the small ubiquitin-like protein SUMO-1 can modify MafB in vitro and in vivo on lysines 32 and 297. The absence of MafB SUMO modification increased MafB-driven transactivation and macrophage differentiation potential but inhibited cell cycle progression and myeloid progenitor growth. Furthermore, we observed that direct repression of MafB transactivation by v-Myb was strictly dependent on MafB SUMO modification. Consequently, a SUMOylation-deficient MafB K32R K297R (K32,297R) mutant could specify macrophage fate even after activation of inducible Myb alleles and resist their differentiation-inhibiting activity. Our findings suggest that SUMO modification of MafB affects the balance between myeloid progenitor expansion and terminal macrophage differentiation by controlling MafB transactivation capacity and susceptibility to Myb repression. SUMO modification of lineage-specific transcription factors may thus modulate transcription factor antagonism to control tissue homeostasis in the hematopoietic system.


Assuntos
Diferenciação Celular , Macrófagos/citologia , Fator de Transcrição MafB/metabolismo , Proteínas Oncogênicas v-myb/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Transcrição Gênica , Animais , Linhagem Celular , Proliferação de Células , Galinhas , Humanos , Camundongos , Modelos Biológicos , Células Mieloides/citologia , Ligação Proteica , Células-Tronco/citologia , Ativação Transcricional/genética
14.
Nat Struct Mol Biol ; 12(1): 67-74, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15608651

RESUMO

The conjugation of small ubiquitin-like modifiers SUMO-1, SUMO-2 and SUMO-3 onto target proteins requires the concerted action of the specific E1-activating enzyme SAE1/SAE2, the E2-conjugating enzyme Ubc9, and an E3-like SUMO ligase. NMR chemical shift perturbation was used to identify the surface of Ubc9 that interacts with the SUMO ligase RanBP2. Unlike known ubiquitin E2-E3 interactions, RanBP2 binds to the beta-sheet of Ubc9. Mutational disruption of Ubc9-RanBP2 binding affected SUMO-2 but not SUMO-1 conjugation to Sp100 and to a newly identified RanBP2 substrate, PML. RanBP2 contains a binding site specific for SUMO-1 but not SUMO-2, indicating that a Ubc9-SUMO-1 thioester could be recruited to RanBP2 via SUMO-1 in the absence of strong binding between Ubc9 and RanBP2. Thus we show that E2-E3 interactions are not conserved across the ubiquitin-like protein superfamily and identify a RanBP2-dependent mechanism for SUMO paralog-specific conjugation.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Chaperonas Moleculares , Dados de Sequência Molecular , Mutação/genética , Ressonância Magnética Nuclear Biomolecular , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética
15.
Biochem J ; 421(2): 223-30, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19392659

RESUMO

The modification of proteins by SUMO (small ubiquitin-related modifier) plays important roles in regulating the activity, stability and cellular localization of target proteins. Similar to ubiquitination, SUMO modification is a dynamic process that can be reversed by SENPs [SUMO-1/sentrin/SMT3 (suppressor of mif two 3 homologue 1)-specific peptidases]. To date, six SENPs have been discovered in humans, although knowledge of their regulation, specificity and biological functions is limited. In the present study, we report that SENP7 has a restricted substrate specificity, being unable to process SUMO precursors and displaying paralogue-specific isopeptidase activity. The C-terminal catalytic domain of SENP7 efficiently depolymerized poly-SUMO-2 chains but had undetectable activity against poly-SUMO-1 chains. SENP7 also displayed isopeptidase activity against di-SUMO-2- and SUMO-2-modified RanGAP1 (Ran GTPase-activating protein 1) but had limited activity against SUMO-1-modified RanGAP1. in vivo, full-length SENP7 was localized to the nucleoplasm and preferentially reduced the accumulation of high-molecular-mass conjugates of SUMO-2 and SUMO-3 compared with SUMO-1. Small interfering RNA-mediated ablation of SENP7 expression led to the accumulation of high-molecular-mass SUMO-2 species and to the accumulation of promyelocytic leukaemia protein in subnuclear bodies. These findings suggest that SENP7 acts as a SUMO-2/3-specific protease that is likely to regulate the metabolism of poly-SUMO-2/3 rather than SUMO-1 conjugation in vivo.


Assuntos
Carbono-Nitrogênio Liases/química , Endopeptidases/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Carbono-Nitrogênio Liases/metabolismo , Chlorocebus aethiops , Endopeptidases/genética , Endopeptidases/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Especificidade por Substrato , Transfecção
16.
Nat Commun ; 11(1): 3807, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32733036

RESUMO

The human genome contains an estimated 600 ubiquitin E3 ligases, many of which are single-subunit E3s (ssE3s) that can bind to both substrate and ubiquitin-loaded E2 (E2~Ub). Within ssE3s structural disorder tends to be located in substrate binding and domain linking regions. RNF4 is a ssE3 ligase with a C-terminal RING domain and disordered N-terminal region containing SUMO Interactions Motifs (SIMs) required to bind SUMO modified substrates. Here we show that, although the N-terminal region of RNF4 bears no secondary structure, it maintains a compact global architecture primed for SUMO interaction. Segregated charged regions within the RNF4 N-terminus promote compaction, juxtaposing RING domain and SIMs to facilitate substrate ubiquitination. Mutations that induce a more extended shape reduce ubiquitination activity. Our result offer insight into a key step in substrate ubiquitination by a member of the largest ubiquitin ligase subtype and reveal how a defined architecture within a disordered region contributes to E3 ligase function.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Nucleares/genética , Ligação Proteica , Domínios Proteicos , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
17.
European J Org Chem ; 2009(33): 5711-5715, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23606807

RESUMO

The isolation, identification and total synthesis of two plant-derived inhibitors of the NF-κB signaling pathway from the iso-seco-tanapartholide family of natural products is described. A key step in the efficient reaction sequence is a late-stage oxidative cleavage reaction that was carried out in the absence of protecting groups to give the natural products directly. A detailed comparison of the synthetic material with samples of the natural products proved informative. Biological studies on synthetic material confirmed that these compounds act late in the NF-κB signaling pathway. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009).

18.
Mol Biol Cell ; 16(11): 5115-26, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16120648

RESUMO

We identify ADAR1, an RNA-editing enzyme with transient nucleolar localization, as a novel substrate for sumoylation. We show that ADAR1 colocalizes with SUMO-1 in a subnucleolar region that is distinct from the fibrillar center, the dense fibrillar component, and the granular component. Our results further show that human ADAR1 is modified by SUMO-1 on lysine residue 418. An arginine substitution of K418 abolishes SUMO-1 conjugation and although it does not interfere with ADAR1 proper localization, it stimulates the ability of the enzyme to edit RNA both in vivo and in vitro. Moreover, modification of wild-type recombinant ADAR1 by SUMO-1 reduces the editing activity of the enzyme in vitro. Taken together these data suggest a novel role for sumoylation in regulating RNA-editing activity.


Assuntos
Adenosina Desaminase/metabolismo , Nucléolo Celular/metabolismo , Edição de RNA , Proteína SUMO-1/fisiologia , Animais , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Lisina/metabolismo , Mutagênese Sítio-Dirigida , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA , Proteína SUMO-1/metabolismo
19.
Mol Cell Biol ; 22(10): 3373-88, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11971970

RESUMO

The androgen receptor (AR) is a nuclear hormone receptor superfamily member that conveys both trans repression and ligand-dependent trans-activation function. Activation of the AR by dihydrotestosterone (DHT) regulates diverse physiological functions including secondary sexual differentiation in the male and the induction of apoptosis by the JNK kinase, MEKK1. The AR is posttranslationally modified on lysine residues by acetylation and sumoylation. The histone acetylases p300 and P/CAF directly acetylate the AR in vitro at a conserved KLKK motif. To determine the functional properties governed by AR acetylation, point mutations of the KLKK motif that abrogated acetylation were engineered and examined in vitro and in vivo. The AR acetylation site point mutants showed wild-type trans repression of NF-kappa B, AP-1, and Sp1 activity; wild-type sumoylation in vitro; wild-type ligand binding; and ligand-induced conformational changes. However, acetylation-deficient AR mutants were selectively defective in DHT-induced trans activation of androgen-responsive reporter genes and coactivation by SRC1, Ubc9, TIP60, and p300. The AR acetylation site mutant showed 10-fold increased binding of the N-CoR corepressor compared with the AR wild type in the presence of ligand. Furthermore, histone deacetylase 1 (HDAC1) bound the AR both in vivo and in cultured cells and HDAC1 binding to the AR was disengaged in a DHT-dependent manner. MEKK1 induced AR-dependent apoptosis in prostate cancer cells. The AR acetylation mutant was defective in MEKK1-induced apoptosis, suggesting that the conserved AR acetylation site contributes to a pathway governing prostate cancer cellular survival. As AR lysine residue mutations that abrogate acetylation correlate with enhanced binding of the N-CoR repressor in cultured cells, the conserved AR motif may directly or indirectly regulate ligand-dependent corepressor disengagement and, thereby, ligand-dependent trans activation.


Assuntos
Apoptose/fisiologia , MAP Quinase Quinase Quinase 1 , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Androgênicos/metabolismo , Proteína SUMO-1/metabolismo , Ativação Transcricional , Acetilação , Motivos de Aminoácidos , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Di-Hidrotestosterona/farmacologia , Inibidores Enzimáticos/metabolismo , Genes Reporter , Histona Desacetilase 1 , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/metabolismo , Técnicas In Vitro , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutação Puntual , Receptores Androgênicos/genética , Proteína SUMO-1/genética , Proteína Smad3 , Ligante Indutor de Apoptose Relacionado a TNF , Transativadores/genética , Transativadores/metabolismo , Transfecção , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
20.
Sci Rep ; 6: 26178, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27185577

RESUMO

SUMO and ubiquitin play important roles in the response of cells to DNA damage. These pathways are linked by the SUMO Targeted ubiquitin Ligase Rnf4 that catalyses transfer of ubiquitin from a ubiquitin loaded E2 conjugating enzyme to a polySUMO modified substrate. Rnf4 can functionally interact with multiple E2s, including Ube2w, in vitro. Chicken cells lacking Rnf4 are hypersensitive to hyroxyurea, DNA alkylating drugs and DNA crosslinking agents, but this sensitivity is suppressed by simultaneous depletion of Ube2w. Cells depleted of Ube2w alone are not hypersensitive to the same DNA damaging agents. Similar results were also obtained in human cells. These data indicate that Ube2w does not have an essential role in the DNA damage response, but is deleterious in the absence of Rnf4. Thus, although Rnf4 and Ube2w functionally interact in vitro, our genetic experiments indicate that in response to DNA damage Ube2w and Rnf4 function in distinct pathways.


Assuntos
Dano ao DNA , Proteínas Nucleares/deficiência , Fatores de Transcrição/deficiência , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Células Cultivadas , Galinhas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA