Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood Cells Mol Dis ; 104: 102796, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37717409

RESUMO

Thrombopoiesis is the production of platelets from megakaryocytes in the bone marrow of mammals. In fish, thrombopoiesis involves the formation of thrombocytes without megakaryocyte-like precursors but derived from erythrocyte thrombocyte bi-functional precursor cells. One unique feature of thrombocyte differentiation involves the maturation of young thrombocytes in circulation. In this study, we investigated the role of hox genes in zebrafish thrombopoiesis to model platelet production. We selected hoxa10b, hoxb2a, hoxc5a, hoxd3a, and hoxc11b from thrombocyte RNA expression data, and checked whether they are expressed in young or mature thrombocytes. We found hoxa10b, hoxb2a, hoxc5a, and hoxd3a were expressed in both young and mature thrombocytes and hoxc11b was expressed in only young thrombocytes. We then performed knockdowns of these 5 hox genes and found hoxc11b knockdown resulted in thrombocytosis and the rest showed thrombocytopenia. To identify hox genes that could have been missed by the above datasets, we performed knockdowns 47 hox genes in the zebrafish genome and found hoxa9a, and hoxb1a knockdowns resulted in thrombocytopenia and they were expressed in both young and mature thrombocytes. In conclusion, our comprehensive knockdown study identified Hoxa10b, Hoxb2a, Hoxc5a, Hoxd3a, Hoxa9a, and Hoxb1a, as positive regulators and Hoxc11b, as a negative regulator for thrombocyte development.


Assuntos
Trombocitopenia , Trombopoese , Animais , Trombopoese/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Genes Homeobox , Plaquetas/metabolismo , Megacariócitos , Trombocitopenia/genética , Mamíferos/genética
2.
Blood Cells Mol Dis ; 93: 102640, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34991062

RESUMO

Progressive pancytopenia is a common feature observed in DNA crosslink repair deficiency disorder, Fanconi anemia (FA). However, this phenotype has not been recapitulated in single FA gene knockout animal models. In this study, we analyzed hematological characteristics in zebrafish null mutants for two FA genes, fanca and fanco. In adult mutants, we demonstrate age-associated reduction in blood cell counts for all lineages, resembling progressive pancytopenia in FA patients. In larval mutants, we demonstrate vascular injury-induced thrombosis defects, particularly upon treatment with crosslinking agent diepoxybutane (DEB), indicating DNA damage induced inefficiency of thrombocytes.


Assuntos
Anemia de Fanconi , Pancitopenia , Trombose , Animais , Dano ao DNA , Anemia de Fanconi/genética , Humanos , Pancitopenia/genética , Trombose/genética , Peixe-Zebra
3.
Platelets ; 33(1): 54-58, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33539196

RESUMO

In humans, splenectomy is performed to treat many clinical disorders, including immune thrombocytopenia. However, the incidence of splenectomies for immune thrombocytopenia as a therapeutic has significantly declined over the past decade due to the availability of new therapies. Infection and sepsis as a result of splenectomies are well documented, but other long-term effects are not well characterized. Evidence suggests that persons who have had a prior splenectomy may be at an increased risk of vascular conditions. Also, elevated levels of cell-derived microparticles appear to contribute to an increased risk of thrombosis and cardiovascular disease. However, in vivo studies on the increased levels of microparticles following splenectomy are limited. In order to understand the effects of splenectomies, we developed a protocol for splenectomy in adult zebrafish. After anesthesia, the spleen was removed under a stereomicroscope after making an incision on the ventral side of the fish. The spleen was removed by pulling with forceps. The incision was closed by Vetbond tissue glue. Blood collected from both splenectomized zebrafish and those that underwent sham surgeries was immunolabeled with polyclonal antisera against αIIb, followed by flow cytometry. We observed elevated levels of thrombocytes and their microparticles in splenectomized zebrafish. Finally, by injecting αIIb antibody intravenously into zebrafish, we found the thrombocyte counts decreased, suggesting the fish developed immune thrombocytopenia like conditions, which were then reversed by splenectomy. In summary, the model developed here should be useful to study molecular changes due to splenectomy. Also, the zebrafish will be useful in modeling treatment of immune thrombocytopenia like conditions.


Assuntos
Púrpura Trombocitopênica Idiopática/cirurgia , Esplenectomia/métodos , Animais , Humanos , Peixe-Zebra
4.
Br J Haematol ; 180(3): 412-419, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29270984

RESUMO

Haemostasis is a defence mechanism that has evolved to protect organisms from losing their circulating fluid. We have previously introduced zebrafish as a model to study the genetics of haemostasis to identify novel genes that play a role in haemostasis. Here, we identify a zebrafish mutant that showed prolonged time to occlusion (TTO) in the laser injury venous thrombosis assay. By linkage analysis and fine mapping, we found a mutation in the orphan G protein-coupled receptor 34 like gene (gpr34l) causing a change of Val to Glu in the third external loop of Gpr34l. We have shown that injection of zebrafish gpr34l RNA rescues the prolonged TTO defect. The thrombocytes from the mutant showed elevated levels of cAMP that supports the defective thrombocyte function. We also have demonstrated that knockdown of this gene by intravenous Vivo-Morpholino injections yielded a phenotype similar to the gpr34l mutation. These results suggest that the lack of functional Gpr34l leads to increased cAMP levels that result in defective thrombocyte aggregation.


Assuntos
Plaquetas/metabolismo , Mutação , Receptores de Lisofosfolipídeos/genética , Animais , Cruzamento , Análise Mutacional de DNA , Expressão Gênica , Fenótipo , Peixe-Zebra
5.
Circ Res ; 118(9): 1363-79, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27126647

RESUMO

Thrombosis is a leading cause of morbidity and mortality worldwide. Animal models are used to understand the pathological pathways involved in thrombosis and to test the efficacy and safety of new antithrombotic drugs. In this review, we will first describe the central role a variety of animal models of thrombosis and hemostasis has played in the development of new antiplatelet and anticoagulant drugs. These include the widely used P2Y12 antagonists and the recently developed orally available anticoagulants that directly target factor Xa or thrombin. Next, we will describe the new players, such as polyphosphate, neutrophil extracellular traps, and microparticles, which have been shown to contribute to thrombosis in mouse models, particularly venous thrombosis models. Other mouse studies have demonstrated roles for the factor XIIa and factor XIa in thrombosis. This has spurred the development of strategies to reduce their levels or activities as a new approach for preventing thrombosis. Finally, we will discuss the emergence of zebrafish as a model to study thrombosis and its potential use in the discovery of novel factors involved in thrombosis and hemostasis. Animal models of thrombosis from zebrafish to nonhuman primates are vital in identifying pathological pathways of thrombosis that can be safely targeted with a minimal effect on hemostasis. Future studies should focus on understanding the different triggers of thrombosis and the best drugs to prevent each type of thrombotic event.


Assuntos
Anticoagulantes/uso terapêutico , Fibrinolíticos/uso terapêutico , Inibidores da Agregação Plaquetária/uso terapêutico , Trombose/tratamento farmacológico , Animais , Modelos Animais de Doenças , Camundongos , Primatas , Trombose/genética , Trombose/metabolismo , Trombose/patologia , Peixe-Zebra
6.
Platelets ; 29(8): 811-820, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29125377

RESUMO

Intraflagellar transport (IFT) proteins are vital for the genesis and maintenance of cilia. Our identification of ift122 transcripts in zebrafish thrombocytes that lack primary cilia was unexpected. IFT proteins serve transport in cilia, whose narrow dimensions may have necessitated the evolution of IFT from vesicular transport in ancestral eukaryotes. We hypothesized that IFTs might also facilitate transport within the filopodia that form when thrombocytes are activated. To test this possibility, we knocked down ift122 expression by injecting antisense Morpholino oligonucleotides (MOs) into zebrafish embryos. Laser-induced arterial thrombosis showed prolonged time to occlusion (TTO) of the vessel, as would be expected with defective thrombocyte function. Acute effects in adult zebrafish were evaluated by Vivo-Morpholino (Vivo-MO) knockdown of ift122. Vivo-MO morphants showed a prolonged time to thrombocyte aggregation (TTA) in the plate tilt assay after thrombocyte activation by the following agonists: ADP, collagen, PAR1 peptide, and epinephrine. A luminescence assay for ATP revealed that ATP secretion by thrombocytes was reduced in collagen-activated blood of Vivo-MO ift122 morphants. Moreover, DiI-C18 labeled morphant thrombocytes exposed to collagen showed reductions in filopodia number and length. Analysis of ift mutants, in which cilia defects have been noted, also showed prolongation of TTO in our arterial laser thrombosis assay. Additionally, collagen activation of wild-type thrombocytes led to a concentration of IFT122 both within and at the base of filopodia. Taken together these results, suggest that IFT proteins are involved in both the extension of filopodia and secretion of ATP, which are critical in thrombocyte function.


Assuntos
Plaquetas/metabolismo , Embrião não Mamífero/metabolismo , Pseudópodes/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Plaquetas/citologia , Embrião não Mamífero/citologia , Técnicas de Silenciamento de Genes , Pseudópodes/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
7.
Blood ; 124(1): 9-10, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24993878

RESUMO

In this issue of Blood, Liu et al describe the creation of a null mutation for the antithrombin III gene (at3) in zebrafish by using zinc finger nuclease technology.


Assuntos
Deficiência de Antitrombina III/genética , Antitrombina III/genética , Modelos Animais de Doenças , Coagulação Intravascular Disseminada/genética , Proteínas de Peixe-Zebra/genética , Animais , Humanos
8.
Blood Cells Mol Dis ; 54(1): 116-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25129381

RESUMO

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a canonical member of a group of dioxins which are byproducts of industrial combustion and are dangerous environmental pollutants. TCDD has been shown to cause several abnormalities in humans and wildlife, and recently, some dioxins have been found to activate platelets. However, TCDD-mediated platelet activation pathways are elusive and virtually nothing is known about TCDD activation of fish thrombocytes. To investigate TCDD effect on thrombocyte function, we tested zebrafish blood in presence of TCDD using a thrombocyte functional assay. We found that TCDD activated thrombocytes. Further experiments showed that thrombocytes of fish treated with TCDD formed both aggregates and filopodia. To investigate the mechanism of TCDD-mediated activation of thrombocytes we used inhibitors for Gq, cyclooxygenase-1, aryl hydrocarbon receptor (AHR), c-src, Akt, and ERK1/2. We found that TCDD induces AHR which activates c-src and signals the activation of Akt and ERK1/2 which are ultimately involved in generation of thromboxane A2. Furthermore, we found that ADP potentiates TCDD action, which led to the discovery that ADP itself activates AHR in the absence of TCDD. Taken together, these results resolved the pathway of TCDD activation of thrombocytes and led to the finding that ADP is an activator of AHR.


Assuntos
Poluentes Ambientais/efeitos adversos , Agregação Plaquetária/efeitos dos fármacos , Dibenzodioxinas Policloradas/efeitos adversos , Receptores de Hidrocarboneto Arílico/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Poluentes Ambientais/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Dibenzodioxinas Policloradas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tromboxano A2/metabolismo
9.
Blood Cells Mol Dis ; 54(1): 78-83, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25135204

RESUMO

Morpholino and vivo-morpholino gene knockdown methods have been used to study thrombocyte function in zebrafish. However, a large-scale knockdown of the entire zebrafish genome using these technologies to study thrombocyte function is prohibitively expensive. We have developed an inexpensive gene knockdown method, which uses a hybrid of a control vivo-morpholino and a standard antisense oligonucleotide specific for a gene. This hybrid molecule is able to deliver antisense deoxyoligonucleotides into zebrafish thrombocytes because it piggybacks on a control vivo-morpholino. To validate use of this hybrid molecule in gene knockdowns, we targeted the thrombocyte specific αIIb gene with a hybrid of a control vivo-morpholino and an oligonucleotide antisense to αIIb mRNA. The use of this piggyback technology resulted in degradation of αIIb mRNA and led to thrombocyte functional defect. This piggyback method to knockdown genes is inexpensive since one control vivo-morpholino can be used to target many different genes by making many independent gene-specific oligonucleotide hybrids. Thus, this novel piggyback technology can be utilized for cost-effective large-scale knockdowns of genes to study thrombocyte function in zebrafish.


Assuntos
Plaquetas/metabolismo , Técnicas de Silenciamento de Genes/métodos , Morfolinos , Glicoproteína IIb da Membrana de Plaquetas , Estabilidade de RNA , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Morfolinos/genética , Morfolinos/farmacologia , Glicoproteína IIb da Membrana de Plaquetas/genética , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Estabilidade de RNA/efeitos dos fármacos , Estabilidade de RNA/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Platelets ; 26(7): 613-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25902147

RESUMO

Zebrafish has become an excellent model system to study mammalian hemostasis. Despite our extensive efforts to develop technologies to measure zebrafish hemostasis and even with previously established thrombocyte qualitative and quantitative functional assays, quantifying thrombocyte function for high throughput applications has been a challenge. In this paper, we have developed two quantitative methods to estimate thrombocyte aggregation: one by whole blood aggregometry and the other by flow cytometry. We found that it is possible to conduct whole blood aggregometry using only 2 µl of blood and the currently available aggregometer. Each of three agonists, arachidonic acid, ADP, and collagen yielded impedance curves similar to those obtained with human blood. We were also able to use flow cytometry to indirectly quantify the extent of thrombocyte aggregation by labeling whole blood with mepacrine, aggregating in the presence of each of the above agonists, separating the aggregates from the white blood cells by centrifugation, and then sorting the resulting white cell fraction for thrombocyte numbers. These methods have high throughput capabilities and have the potential to be used in large scale screens to detect and characterize mutants with thrombocyte functional defects or to identify genes involved in thrombocyte function by large scale knockdowns.


Assuntos
Plaquetas/metabolismo , Citometria de Fluxo , Agregação Plaquetária , Testes de Função Plaquetária , Peixe-Zebra/sangue , Animais , Animais Geneticamente Modificados , Ácido Araquidônico/farmacologia , Plaquetas/efeitos dos fármacos , Citometria de Fluxo/métodos , Cinética , Agregação Plaquetária/efeitos dos fármacos
12.
Blood Cells Mol Dis ; 52(1): 76-81, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23954211

RESUMO

Factor VII, the initiator of the extrinsic coagulation cascade, circulates in human plasma mainly in its zymogen form, factor VII and in small amounts in its activated form, factor VIIa. However, the mechanism of initial generation of factor VIIa is not known despite intensive research using currently available model systems. Earlier findings suggested serine proteases factor VII activating protease and hepsin play a role in activating factor VII, however, it has remained controversial. In this paper we estimated the levels of factor VIIa and factor VII for the first time in zebrafish adult population and also reevaluated the role of the above two serine proteases in activating factor VII in vivo using zebrafish as a model system. Knockdown of factor VII activating protease and hepsin was performed followed by assaying for their effect on factor VIIa concentration and extrinsic coagulation as measured by the kinetic prothrombin time. Factor VII activating protease knockdown showed no change in kinetic prothrombin time and no effect on factor VIIa levels while hepsin knockdown increased the kinetic prothrombin time and significantly reduced the factor VIIa plasma levels. Our results thus indicate that hepsin plays a physiologically important role in factor VII activation and hemostasis in zebrafish.


Assuntos
Coagulação Sanguínea/genética , Fator VII/genética , Fator VIIa/genética , Serina Endopeptidases/genética , Peixe-Zebra/genética , Animais , Fator VII/antagonistas & inibidores , Fator VII/metabolismo , Fator VIIa/metabolismo , Fator Xa/administração & dosagem , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Injeções Intravenosas , Cinética , Morfolinos/genética , Morfolinos/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Tempo de Protrombina , Serina Endopeptidases/metabolismo , Transdução de Sinais , Xenopus laevis/genética , Xenopus laevis/metabolismo , Peixe-Zebra/metabolismo
13.
Methods Mol Biol ; 2812: 193-201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39068363

RESUMO

Our laboratory is interested in investigating the maturation process of zebrafish thrombocytes, which are functional equivalents to human platelets. We have adopted the zebrafish model to gain insights into mammalian platelet production, or thrombopoiesis. Notably, zebrafish exhibit two distinct populations of thrombocytes in their circulating blood: young and mature thrombocytes. This observation is intriguing because maturation appears to occur in circulation, yet the precise mechanisms governing this maturation remain elusive. Our goal is to understand the mechanisms underlying thrombocyte maturation by conducting single-cell RNA sequencing (scRNA-Seq) on young and mature thrombocytes, analyzing these transcriptomes to identify genes specific to each thrombocyte population, and elucidating the role of these genes in the maturation process, by quantifying thrombocyte numbers after the piggyback knockdown of each of these genes. In this chapter, we present a comprehensive, step-by-step protocol detailing the multifaceted methodology involved in understanding thrombocyte maturation, which encompasses the collection of zebrafish blood, the separation of young and mature thrombocytes using flow cytometry, scRNA-Seq analysis of these distinct thrombocyte populations, identification of genes specific to young and mature thrombocytes, and subsequent validation through gene knockdown techniques.


Assuntos
Plaquetas , Perfilação da Expressão Gênica , Análise de Célula Única , Transcriptoma , Peixe-Zebra , Peixe-Zebra/genética , Animais , Plaquetas/metabolismo , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Genômica/métodos , Trombopoese/genética , Citometria de Fluxo , Análise de Sequência de RNA/métodos , Humanos
14.
Blood Coagul Fibrinolysis ; 35(5): 238-247, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38874909

RESUMO

The aim of this study is to characterize zebrafish coagulation cofactors fviii and fv mutant fish and assess if they phenocopy classical hemophilia A and factor V deficiency in humans. The embryos from fviii and fv zebrafish heterozygote mutants generated by ENU mutagenesis were purchased from the ZIRC repository. They were reared to adulthood and genotyped. The heterozygote male and female were crossed to get homozygote, heterozygote, and wild-type fish. Functional kinetic coagulation assays and bleeding assays were performed on normal and mutant adult fish, and venous laser injury assays were performed on the larvae. The DNA from fviii and fv mutants were sequenced to confirm if they have a premature stop codon in exon 19, and in exon 2, respectively, and in both mutants, the amino acid glutamine is replaced with a stop codon. Homozygous and heterozygous 5 days post fertilization (dpf) larvae for fviii and fv deficient mutants exhibited prolonged time to occlusion after venous laser injury compared to wild-type controls. The homozygous and heterozygous fviii adult mutants showed modest bleeding and delayed fibrin formation in the kinetic partial thromboplastin time (kPTT) assay with their plasma. fv homozygous larvae had poor survival beyond 12 dpf. However, heterozygous fv mutants exhibited heavy bleeding and prolonged fibrin formation in the kPTT and kPT assay compared with wild-type siblings. Our characterization showed fviii and fv mutants from ZIRC phenocopied to a considerable extent classical hemophilia A and factor V deficiency in humans, respectively. These models should be useful in studying and developing novel drugs that reverse the phenotype and in generating suppressor mutations to identify novel factors that compensate for these deficiencies.


Assuntos
Modelos Animais de Doenças , Deficiência do Fator V , Fator VIII , Hemofilia A , Peixe-Zebra , Animais , Hemofilia A/genética , Hemofilia A/sangue , Fator VIII/genética , Fator VIII/metabolismo , Deficiência do Fator V/genética , Fator V/genética , Mutação , Feminino , Masculino , Coagulação Sanguínea , Humanos
15.
bioRxiv ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39229042

RESUMO

Liver tissues, composed of hepatocytes, cholangiocytes, stellate cells, Kupffer cells, and sinusoidal endothelial cells, are differentiated from endodermal and mesodermal germ layers. By mimicking the developmental process of the liver, various differentiation protocols have been published to generate human liver organoids (HLOs) in vitro using induced pluripotent stem cells (iPSCs). However, HLOs derived solely from the endodermal germ layer often encounter technical hurdles, such as insufficient maturity and functionality, limiting their utility for disease modeling and hepatotoxicity assays. To overcome this, we separately differentiated EpCAM+ endodermal progenitor cells (EPCs) and mesoderm-derived vascular progenitor cells (VPCs) from the same human iPSC line. These cells were then mixed in BME-2 matrix and concurrently differentiated into vascular human liver organoids (vHLOs). Remarkably, vHLOs exhibited significantly higher maturity than vasculature-free HLOs, as demonstrated by increased coagulation factor secretion, albumin secretion, drug-metabolizing enzyme (DME) expression, and bile acid transportation. To enhance assay throughput and miniaturize vHLO culture, we 3D bioprinted expandable HLOs (eHLOs) in BME-2 matrix on a pillar plate platform derived from EPCs and VPCs and compared with HLOs derived from endoderm alone. Compared to HLOs cultured in a 50 µL BME-2 matrix dome in a 24-well plate, vHLOs cultured on the pillar plate exhibited superior maturity, likely due to enhanced nutrient and signaling molecule diffusion. The integration of physiologically relevant patterned liver organoids with the unique pillar plate platform enhanced the capabilities for high-throughput screening and disease modeling.

16.
Biol Open ; 13(9)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39263862

RESUMO

Contemporary cardiac injury models in zebrafish larvae include cryoinjury, laser ablation, pharmacological treatment and cardiac dysfunction mutations. Although effective in damaging cardiomyocytes, these models lack the important element of myocardial hypoxia, which induces critical molecular cascades within cardiac muscle. We have developed a novel, tractable, high throughput in vivo model of hypoxia-induced cardiac damage that can subsequently be used in screening cardioactive drugs and testing recovery therapies. Our potentially more realistic model for studying cardiac arrest and recovery involves larval zebrafish (Danio rerio) acutely exposed to severe hypoxia (PO2=5-7 mmHg). Such exposure induces loss of mobility quickly followed by cardiac arrest occurring within 120 min in 5 days post fertilization (dpf) and within 40 min at 10 dpf. Approximately 90% of 5 dpf larvae survive acute hypoxic exposure, but survival fell to 30% by 10 dpf. Upon return to air-saturated water, only a subset of larvae resumed heartbeat, occurring within 4 min (5 dpf) and 6-8 min (8-10 dpf). Heart rate, stroke volume and cardiac output in control larvae before hypoxic exposure were 188±5 bpm, 0.20±0.001 nL and 35.5±2.2 nL/min (n=35), respectively. After briefly falling to zero upon severe hypoxic exposure, heart rate returned to control values by 24 h of recovery. However, reflecting the severe cardiac damage induced by the hypoxic episode, stroke volume and cardiac output remained depressed by ∼50% from control values at 24 h of recovery, and full restoration of cardiac function ultimately required 72 h post-cardiac arrest. Immunohistological staining showed co-localization of Troponin C (identifying cardiomyocytes) and Capase-3 (identifying cellular apoptosis). As an alternative to models employing mechanical or pharmacological damage to the developing myocardium, the highly reproducible cardiac effects of acute hypoxia-induced cardiac arrest in the larval zebrafish represent an alternative, potentially more realistic model that mimics the cellular and molecular consequences of an infarction for studying cardiac tissue hypoxia injury and recovery of function.


Assuntos
Modelos Animais de Doenças , Parada Cardíaca , Hipóxia , Larva , Peixe-Zebra , Animais , Parada Cardíaca/fisiopatologia , Parada Cardíaca/etiologia , Parada Cardíaca/metabolismo , Parada Cardíaca/complicações , Miocárdio/metabolismo , Miocárdio/patologia , Coração/fisiopatologia , Frequência Cardíaca
17.
Sci Rep ; 13(1): 16066, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752184

RESUMO

Previous studies have shown that human platelets and megakaryocytes carry microRNAs suggesting their role in platelet function and megakaryocyte development, respectively. However, a comprehensive study on the microRNAs and their targets has not been undertaken. Zebrafish thrombocytes could be used as a model to study their role in megakaryocyte maturation and platelet function because thrombocytes have both megakaryocyte features and platelet properties. In our laboratory, we identified 15 microRNAs in thrombocytes using single-cell RNA sequencing. We knocked down each of these 15 microRNAs by the piggyback method and found knockdown of three microRNAs, mir-7148, let-7b, and mir-223 in adult zebrafish led to an increase in the percentage of thrombocytes. Functional thrombocyte analysis using plate tilt assay showed no modulatory effect of the three microRNAs on thrombocyte aggregation/agglutination. We also found enhanced thrombosis using arterial laser thrombosis assay in a group of zebrafish larvae after mir-7148, let-7b, and mir-223 knockdowns. These results suggested mir-7148, let-7b, and mir-223 are repressors for thrombocyte production. We then explored miRWalk database for let-7b downstream targets and then selected those that are expressed in thrombocytes, and from this list based on their role in differentiation selected 14 genes, rorca, tgif1, rfx1a, deaf1, zbtb18, mafba, cebpa, spi1a, spi1b, fhl3b, ikzf1, irf5, irf8, and lbx1b that encode transcriptional regulators. The qRT-PCR analysis of expression levels of the above genes following let-7b knockdown showed changes in the expression of 13 targets. We then studied the effect of the 13 targets on thrombocyte production and identified 5 genes, irf5, tgif1, irf8, cebpa, and rorca that showed thrombocytosis and one gene, ikzf1 that showed thrombocytopenia. Furthermore, we tested whether mir-223 regulates any of the above 13 transcription factors after mir-223 knockdown using qRT-PCR. Six of the 13 genes showed similar gene expression as observed with let-7b knockdown and 7 genes showed opposing results. Thus, our results suggested a possible regulatory network in common with both let-7b and mir-223. We also identified that tgif1, cebpa, ikzf1, irf5, irf8, and ikzf1 play a role in thrombopoiesis. Since the ikzf1 gene showed a differential expression profile in let-7b and mir-223 knockdowns but resulted in thrombocytopenia in ikzf1 knockdown in both adults and larvae we also studied an ikzf1 mutant and showed the mutant had thrombocytopenia. Taken together, these studies showed that thrombopoiesis is controlled by a network of transcription regulators that are regulated by multiple microRNAs in both positive and negative manner resulting in overall inhibition of thrombopoiesis.


Assuntos
MicroRNAs , Trombocitopenia , Trombose , Adulto , Humanos , Animais , Trombopoese/genética , Peixe-Zebra/genética , Fatores Reguladores de Interferon , MicroRNAs/genética
18.
Res Sq ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37162944

RESUMO

Previous studies have shown that human platelets and megakaryocytes carry microRNAs suggesting their role in platelet function and megakaryocyte development, respectively. However, a comprehensive study on the microRNAs and their targets has not been undertaken. Zebrafish thrombocytes could be used as a model to study their role in megakaryocyte maturation and platelet function because thrombocytes have both megakaryocyte features and platelet properties. In our laboratory, we identified 15 microRNAs in thrombocytes using single-cell RNA sequencing. We knocked down each of these 15 microRNAs by the piggyback method and found knockdown of three microRNAs, mir-7148, let-7b , and mir-223 in adult zebrafish led to an increase in the percentage of thrombocytes. Functional thrombocyte analysis using plate tilt assay showed no modulatory effect of the three microRNAs on thrombocyte aggregation/agglutination. We also found enhanced thrombosis using arterial laser thrombosis assay in a group of zebrafish larvae after mir-7148, let-7b , and mir-223 knockdowns. These results suggested mir-7148, let-7b , and mir-223 are repressors for thrombocyte production. We then explored miRWalk database for let-7b downstream targets and then selected those that are expressed in thrombocytes, and from this list based on their role in differentiation selected 14 genes, rorca, tgif1, rfx1a, deaf1, zbtb18, mafba, cebpa, spi1a, spi1b, fhl3b, ikzf1, irf5, irf8 , and lbx1b that encode transcriptional regulators. The qRT-PCR analysis of expression levels of the above genes following let-7b knockdown showed changes in the expression of 13 targets. We then studied the effect of the 13 targets on thrombocyte production and identified 5 genes, irf5, tgif1, irf8, cebpa , and rorca that showed thrombocytosis and one gene, ikzf1 that showed thrombocytopenia. Furthermore, we tested whether mir-223 regulates any of the above 13 transcription factors after mir-223 knockdown using qRT-PCR. Six of the 13 genes showed similar gene expression as observed with let-7b knockdown and 7 genes showed opposing results. Thus, our results suggested a possible regulatory network in common with both let-7b and mir-223 . We also identified that tgif1, cebpa, ikzf1, irf5 , irf8 , and ikzf1 play a role in thrombopoiesis. Since the ikzf1 gene showed a differential expression profile in let-7b and mir-223 knockdowns but resulted in thrombocytopenia in ikzf1 knockdown in both adults and larvae we also studied an ikzf1 mutant and showed the mutant had thrombocytopenia. Taken together, these studies showed that thrombopoiesis is controlled by a network of transcription regulators that are regulated by multiple microRNAs in both positive and negative manner resulting in overall inhibition of thrombopoiesis.

19.
Blood Cells Mol Dis ; 48(3): 183-7, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22297253

RESUMO

Our earlier studies on the structural and functional properties of zebrafish thrombocytes have shown that they have many similarities to mammalian platelets. We have also shown that zebrafish have both young and mature thrombocytes as do mammalian platelets. In addition, we have distinguished young thrombocytes from mature thrombocytes microscopically using lipophilic DiI-C18, and have shown that young thrombocytes have higher GPIIb receptor levels. However, at present, there is no immunoselection method to separate young thrombocytes from mature thrombocytes in order to study differences among them, such as mRNA expression levels of thrombocyte specific genes. We developed a novel technique employing specific biotinylated anti-Cy3 antibody against the chromophore of DiI-C18 and using streptavidin magnetic beads to separate young thrombocytes from mature thrombocytes. Our technique separates and differentiates young and mature thrombocytes from whole blood. This method is specific and is effective with small amounts of blood.


Assuntos
Plaquetas/metabolismo , Separação Imunomagnética/métodos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Plaquetas/química , Metilaminas/química , Metilaminas/imunologia , Metilaminas/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/imunologia , RNA/isolamento & purificação , Coloração e Rotulagem , Peixe-Zebra/metabolismo
20.
Blood Cells Mol Dis ; 48(3): 188-96, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22306208

RESUMO

Hemostasis is a defense mechanism that protects an organism from bleeding in the event of injury. We have previously demonstrated the utility of the zebrafish as a model to study human hemostasis. However, there are no studies on the role of microparticles in hemostasis in early vertebrates. Studying microparticles in zebrafish may provide insight into the evolution of microparticle function in hemostasis and may lead to direct observation of these microparticles in zebrafish larvae due to transparency of the vessels. In this investigation we demonstrate the presence of cellular microparticles in fish blood by both immunostaining as well as by using zebrafish whose thrombocytes are labeled with green fluorescent protein. Further investigation showed that microparticles were also labeled by fluorescein isothiocyanate annexin V, suggesting that these particles are derived via apoptosis. A portion of the fluorescein isothiocyanate annexin V labeled microparticles was also labeled by DiI-C18. Labeling by DiI-C18 suggests that some microparticles are derived from young thrombocytes. Additionally, GpIIb antibody labels almost all thrombocyte-derived microparticles and a greater percentage of microparticles are labeled by GpIIb antibody than by DiI-C18. This suggests that thrombocyte microparticles are derived from both young and mature thrombocytes. Furthermore, the increase of microparticles by adding excessive microparticles into blood in vitro and through intravenous injections led to an increased hemostatic response. In addition, treatment with tumor necrosis factor alpha resulted in an increased number of thrombocyte microparticles and enhanced hemostasis; in contrast, treatment with zVAD-FMK, a caspase inhibitor, resulted in a decrease in thrombocyte microparticles and decreased hemostasis. We also found that thrombocyte microparticles agglutinate, along with other cells and cellular microparticles, in the presence of an excess of either ristocetin or ultra-large von Willebrand factor. Also, stimulation of von Willebrand factor release in vivo resulted in clusters of thrombocyte microparticles in the veins. Moreover, thrombocyte microparticles were the first to appear at the site of arterial injury. We found that thrombocyte microparticles are functionally equivalent to platelet microparticles. The microparticles initiate arterial thrombus formation in a von Willebrand factor-dependent manner and further enhance thrombus formation by forming clusters of microparticles in venous thrombosis. This finding may have applications for understanding the role of platelet microparticles in humans and may have diagnostic applications.


Assuntos
Plaquetas/metabolismo , Micropartículas Derivadas de Células/metabolismo , Hemostasia/fisiologia , Peixe-Zebra/metabolismo , Aglutinação/fisiologia , Animais , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA