Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Small ; : e2307512, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342669

RESUMO

Second-harmonic generation (SHG) offers a convenient approach for infrared-to-visible light conversion in tunable nanoscale light sources and optical communication. Semiconductor nanostructures offer rich possibilities to tailor their nonlinear optical properties. In this study, strong second-harmonic generation in InP nanomembranes with InAsP quantum well (QW) is demonstrated. Compared with bulk InP, up to 100 times enhancement of SHG is achieved in the short-wave infrared range. This enhancement is shown to be predominantly induced by the resonance-enhanced absorption and quantum confinement of fundamental wavelengths in the InAsP QW. The thin nanomembrane structure will also provide nanocavity enhancement for second-harmonic wavelengths. The enhanced SHG peak wavelengths can also be tuned by changing the QW composition. These findings provide an effective strategy for enhancing and manipulating the second-harmonic generation in semiconductor quantum-confined nanostructures for on-chip all-optical applications.

2.
Nanotechnology ; 35(17)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38237187

RESUMO

Single-photon detector (SPD), an essential building block of the quantum communication system, plays a fundamental role in developing next-generation quantum technologies. In this work, we propose an efficient modeling workflow of nanowire SPDs utilizing avalanche breakdown at reverse-biased conditions. The proposed workflow is explored to maximize computational efficiency and balance time-consuming drift-diffusion simulation with fast script-based post-processing. Without excessive computational effort, we could predict a suite of key device performance metrics, including breakdown voltage, dark/light avalanche built-up time, photon detection efficiency, dark count rate, and the deterministic part of timing jitter due to device structures. Implementing the proposed workflow onto a single InP nanowire and comparing it to the extensively studied planar devices and superconducting nanowire SPDs, we showed the great potential of nanowire avalanche SPD to outperform their planar counterparts and obtain as superior performance as superconducting nanowires, i.e. achieve a high photon detection efficiency of 70% with a dark count rate less than 20 Hz at non-cryogenic temperature. The proposed workflow is not limited to single-nanowire or nanowire-based device modeling and can be readily extended to more complicated two-/three dimensional structures.

3.
Nano Lett ; 23(10): 4359-4366, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37155142

RESUMO

Surface plasmons have robust and strong confinement to the light field which is beneficial for the light-matter interaction. Surface plasmon amplification by stimulated emission of radiation (SPACER) has the potential to be integrated on the semiconductor chip as a compact coherent light source, which can play an important role in further extension of Moore's law. In this study, we demonstrate the localized surface plasmon lasing at room temperature in the communication band using metallic nanoholes as the plasmonic nanocavity and InP nanowires as the gain medium. Optimizing laser performance has been demonstrated by coupling between two metallic nanoholes which adds another degree of freedom for manipulating the lasing properties. Our plasmonic nanolasers exhibit lower power consumption, smaller mode volumes, and higher spontaneous emission coupling factors due to enhanced light-matter interactions, which are very promising in the applications of high-density sensing and photonic integrated circuits.

4.
Nanotechnology ; 34(44)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37473744

RESUMO

In this work, we demonstrate optically pumped lasing in highly Zn-doped GaAs nanowires (NWs) lying on an iron film. The conically shaped NWs are first covered with an 8 nm thick Al2O3film to prevent atmospheric oxidation and mitigate band-bending effects. Multimode and single-mode lasing have been observed for NWs with a length greater or smaller than 2µm, respectively. Finite difference time domain calculations reveal a weak electric field enhancement in the Al2O3layer at the NW/iron film interface for the lasing modes. The high Zn acceptor concentration in the NWs provides enhanced radiative efficiency and enables lasing on the iron film despite plasmonic losses. Our results open avenues for integrating NW lasers on ferromagnetic substrates to achieve new functionalities, such as magnetic field-induced modulation.

5.
Nanotechnology ; 34(49)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37625398

RESUMO

Large-area epitaxial growth of III-V nanowires and thin films on van der Waals substrates is key to developing flexible optoelectronic devices. In our study, large-area InAs nanowires and planar structures are grown on hexagonal boron nitride templates using metal organic chemical vapor deposition method without any catalyst or pre-treatments. The effect of basic growth parameters on nanowire yield and thin film morphology is investigated. Under optimised growth conditions, a high nanowire density of 2.1×109cm-2is achieved. A novel growth strategy to achieve uniform InAs thin film on h-BN/SiO2/Si substrate is introduced. The approach involves controlling the growth process to suppress the nucleation and growth of InAs nanowires, while promoting the radial growth of nano-islands formed on the h-BN surface. A uniform polycrystalline InAs thin film is thus obtained over a large area with a dominant zinc-blende phase. The film exhibits near-band-edge emission at room temperature and a relatively high Hall mobility of 399 cm-2/(Vs). This work suggests a promising path for the direct growth of large-area, low-temperature III-V thin films on van der Waals substrates.

6.
Nano Lett ; 22(24): 9920-9927, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36516353

RESUMO

We report a simple and facile integration strategy of a laser source in passive photonic integrated circuits (PICs) by deterministically embedding semiconductor nanowires (NWs) in waveguides. InP NWs laid on a SiN slab are buried by a polymer layer which also acts as an electron-beam resist. With electron-beam lithography, hybrid polymer-SiN waveguides are formed with precisely embedded NWs. The lasing behavior of the waveguide-embedded NWs is confirmed, and more importantly, the NW lasing mode couples into the hybrid waveguide and forms an in-plane guiding mode. Multiple waveguide-embedded NW lasers are further integrated in complex photonic structures to illustrate that the waveguiding mode supplied by the NW lasers could be manipulated for on-chip signal processing, including power splitting and wavelength-division multiplexing. This integration strategy of an on-chip laser is applicable to other PIC platforms, such as silicon and lithium niobate, and the top cladding layer could be changed by depositing SiN or SiO2, promising its CMOS compatibility.

7.
Nat Mater ; 20(3): 321-328, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33139892

RESUMO

Single-photon emitters (SPEs) in hexagonal boron nitride (hBN) have garnered increasing attention over the last few years due to their superior optical properties. However, despite the vast range of experimental results and theoretical calculations, the defect structure responsible for the observed emission has remained elusive. Here, by controlling the incorporation of impurities into hBN via various bottom-up synthesis methods and directly through ion implantation, we provide direct evidence that the visible SPEs are carbon related. Room-temperature optically detected magnetic resonance is demonstrated on ensembles of these defects. We perform ion-implantation experiments and confirm that only carbon implantation creates SPEs in the visible spectral range. Computational analysis of the simplest 12 carbon-containing defect species suggest the negatively charged [Formula: see text] defect as a viable candidate and predict that out-of-plane deformations make the defect environmentally sensitive. Our results resolve a long-standing debate about the origin of single emitters at the visible range in hBN and will be key to the deterministic engineering of these defects for quantum photonic devices.

8.
Opt Express ; 30(3): 3172-3182, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209584

RESUMO

We demonstrate unique reflective properties of light from bare and gold-coated InP nanowire (NW) photonic crystal arrays. The undoped wurtzite InP nanowire arrays are grown by selective area epitaxy and coated with a 12-nm thick Al2O3 film to suppress atmospheric oxidation. A nominally 10-nm thick gold film is deposited around the NWs to investigate plasmonic effects. The reflectance spectra show pronounced Fabry-Perot oscillations, which are shifted for p- and s-polarized light due to a strong intrinsic birefringence in the NW arrays. Gold-coating of the NW array leads to a significant increase of the reflectance by a factor of two to three compared to the uncoated array, which is partially attributed to a plasmon resonance of the gold caps on top of the NWs and to a plasmonic antenna effect for p-polarized light. These interpretations are supported by finite-difference-time-domain simulations. Our experiments and simulations indicate that NW arrays can be used to design micrometer-sized polarizers, analyzers, and mirrors which are important optical elements in optoelectronic integrated circuits.

9.
Nano Lett ; 21(16): 6967-6974, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34397217

RESUMO

With a band gap close to the Shockley-Quiesser limit and excellent conduction band alignment with the water reduction potential, InP is an ideal photocathode material for photoelectrochemical (PEC) water reduction. Here, we develop facile self-assembled Au nanodots based on dewetting phenomena as a masking technique to fabricate wafer-scale InP nanowires (NWs) via a top-down approach. In addition, we report dual-function wet treatment using sulfur-dissolved oleylamine (S-OA) to remove a plasma-damaged surface in a controlled manner and stabilize InP NWs against surface corrosion in harsh electrolyte solutions. The resulting InP NW photocathodes exhibit an excellent photocurrent density of 33 mA/cm2 under 1 sun illumination in 1 M HCl with a highly stabilized performance without needing additional protection layers. Our approach combining large-area NW fabrication and surface engineering synergistically enhances light harvesting and PEC performance and stability, thereby providing a pathway for the development of efficient and durable InP photoelectrodes in a scalable manner.

10.
Nano Lett ; 21(9): 3901-3907, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33900783

RESUMO

Random lasers are promising, easy-to-fabricate light sources that rely on scattering instead of well-defined optical cavities. We demonstrate random lasing in GaAs nanowires using both randomly oriented and vertically aligned arrays. These configurations are shown to lase in both resonant and nonresonant modes, where aligned nanowires support predominantly resonant lasing and randomly oriented favors nonresonant lasing. On the basis of numerical simulations, aligning the nanowires increases the system's scattering efficiency leading to higher quality factor modes and thus favoring the resonant modes. We further demonstrate two methods to optically suppress resonant mode lasing by increasing the number of excited modes. The light output-light input curves show a pronounced kink for the resonant lasing mode while the nonresonant mode is kink-free. The resonant lasing modes may be used as tunable lasers, and the nonresonant modes exhibit near-thresholdless amplification. Switching between lasing modes opens up new opportunities to use lasers in broader applications.

11.
Nano Lett ; 21(13): 5681-5688, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34143635

RESUMO

In the near future, technological advances driven by the Fourth Industrial Revolution will boost the demand for integrated, power-efficient miniature lasers, which are important for optical data communications and advanced sensing applications. Although top-down fabricated III-V semiconductor micro-disk and micro-ring lasers have been shown to be efficient light sources, challenges such as etching-induced sidewall roughness and poor fabrication scalability have been limiting the potential for high-density on-chip integration. Here, we demonstrate InP micro-ring lasers fabricated with a highly scalable epitaxial growth technique. With an optimized cavity design, the optically pumped micro-ring lasers show efficient room-temperature lasing with a lasing threshold of around 50 µJ cm-2 per pulse. Remarkably, through comprehensive modeling of the micro-ring laser, we demonstrate lasing mode engineering experimentally by tuning the vertical ring height. Our work is a major step toward realizing the high-density monolithic integration of III-V miniature lasers on submicrometer-scale optoelectronic devices.

12.
Nano Lett ; 21(17): 7388-7395, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34424703

RESUMO

Highly compact, filter-free multispectral photodetectors have important applications in biological imaging, face recognition, and remote sensing. In this work, we demonstrate room-temperature wavelength-selective multipixel photodetectors based on GaAs0.94Sb0.06 nanowire arrays grown by metalorganic vapor phase epitaxy, providing more than 10 light detection channels covering both visible and near-infrared ranges without using any optical filters. The nanowire array geometry-related tunable spectral photoresponse has been demonstrated both theoretically and experimentally and shown to be originated from the strong and tunable resonance modes that are supported in the GaAsSb array nanowires. High responsivity and detectivity (up to 44.9 A/W and 1.2 × 1012 cm √Hz/W at 1 V, respectively) were obtained from the array photodetectors, enabling high-resolution RGB color imaging by applying such a nanowire array based single pixel imager. The results indicate that our filter-free wavelength-selective GaAsSb nanowire array photodetectors are promising candidates for the development of future high-quality multispectral imagers.


Assuntos
Nanofios , Diagnóstico por Imagem
13.
Small ; 17(21): e2100263, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33856732

RESUMO

There is a strong demand for III-V nanostructures of different geometries and in the form of interconnected networks for quantum science applications. This can be achieved by selective area epitaxy (SAE) but the understanding of crystal growth in these complicated geometries is still insufficient to engineer the desired shape. Here, the shape evolution and crystal structure of InP nanostructures grown by SAE on InP substrates of different orientations are investigated and a unified understanding to explain these observations is established. A strong correlation between growth direction and crystal phase is revealed. Wurtzite (WZ) and zinc-blende (ZB) phases form along <111>A and <111>B directions, respectively, while crystal phase remains the same along other low-index directions. The polarity induced crystal structure difference is explained by thermodynamic difference between the WZ and ZB phase nuclei on different planes. Growth from the openings is essentially determined by pattern confinement and minimization of the total surface energy, regardless of substrate orientations. A novel type-II WZ/ZB nanomembrane homojunction array is obtained by tailoring growth directions through alignment of the openings along certain crystallographic orientations. The understanding in this work lays the foundation for the design and fabrication of advanced III-V semiconductor devices based on complex geometrical nanostructures.

14.
Opt Express ; 29(21): 33548-33557, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809165

RESUMO

Random lasers, which rely on random scattering events unlike traditional Fabry-Pérot cavities, are much simpler and cost-effective to fabricate. However, because of the chaotic fluctuations and instability of the lasing modes, controlling the lasing properties is challenging. In this study, we use random InP nanowire (NW) arrays that operate in the Anderson localization regime with stable modes as the random lasers. We show that by changing the design parameters of the NW arrays, such as filling factor, dimensions of the NWs, degree of randomness, and the size of the array, the properties of the lasing modes including the number of modes, lasing wavelengths, and lasing threshold can be controlled.

15.
Sensors (Basel) ; 21(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34450862

RESUMO

Semiconductor nanowire arrays have been demonstrated as promising candidates for nanoscale optoelectronics applications due to their high detectivity as well as tunable photoresponse and bandgap over a wide spectral range. In the infrared (IR), where these attributes are more difficult to obtain, nanowires will play a major role in developing practical devices for detection, imaging and energy harvesting. Due to their geometry and periodic nature, vertical nanowire and nanopillar devices naturally lend themselves to waveguide and photonic crystal mode engineering leading to multifunctional materials and devices. In this paper, we computationally develop theoretical basis to enable better understanding of the fundamental electromagnetics, modes and couplings that govern these structures. Tuning the photonic response of a nanowire array is contingent on manipulating electromagnetic power flow through the lossy nanowires, which requires an intimate knowledge of the photonic crystal modes responsible for the power flow. Prior published work on establishing the fundamental physical modes involved has been based either on the modes of individual nanowires or numerically computed modes of 2D photonic crystals. We show that a unified description of the array key electromagnetic modes and their behavior is obtainable by taking into account modal interactions that are governed by the physics of exceptional points. Such models that describe the underlying physics of the photoresponse of nanowire arrays will facilitate the design and optimization of ensembles with requisite performance. Since nanowire arrays represent photonic crystal slabs, the essence of our results is applicable to arbitrary lossy photonic crystals in any frequency range.

16.
Nano Lett ; 20(3): 1862-1868, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32017573

RESUMO

Semiconductor nanowire (NW) lasers are a promising technology for the realization of coherent optical sources with ultrasmall footprint. To fully realize their potential in on-chip photonic systems, scalable methods are required for dealing with large populations of inhomogeneous devices that are typically randomly distributed on host substrates. In this work two complementary, high-throughput techniques are combined: the characterization of nanowire laser populations using automated optical microscopy, and a high-accuracy transfer-printing process with automatic device spatial registration and transfer. Here, a population of NW lasers is characterized, binned by threshold energy density, and subsequently printed in arrays onto a secondary substrate. Statistical analysis of the transferred and control devices shows that the transfer process does not incur measurable laser damage, and the threshold binning can be maintained. Analysis on the threshold and mode spectra of the device populations proves the potential for using NW lasers for integrated systems fabrication.

17.
Opt Express ; 28(11): 16795-16804, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549494

RESUMO

Nominal dopant-free zinc blende twinning superlattice InP nanowires have been grown with high crystal-quality and taper-free morphology. Here, we demonstrate its superior optical performance and clarify the different carrier recombination mechanisms at different temperatures using a time resolved photoluminescence study. The existence of regular twin planes and lateral overgrowth do not significantly increase the defect density. At room temperature, the as-grown InP nanowires have a strong emission at 1.348 eV and long minority carrier lifetime (∼3 ns). The carrier recombination dynamics is mainly dominated by nonradiative recombination due to surface trapping states; a wet chemical etch to reduce the surface trapping density thus boosts the emission intensity and increases the carrier lifetime to 7.1 ns. This nonradiative recombination mechanism dominates for temperatures above 155 K, and the carrier lifetime decreases with increasing temperature. However, radiative recombination dominates the carrier dynamics at temperature below ∼75 K, and a strong donor-bound exciton emission with a narrow emission linewidth of 4.5 meV is observed. Consequently, carrier lifetime increases with temperature. By revealing carrier recombination mechanisms over the temperature range 10-300 K, we demonstrate the attraction of using InP nanostructure for photonics and optoelectronic applications.

18.
Nanotechnology ; 31(42): 424001, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32583811

RESUMO

We present spatially and spectrally resolved emission from nanowires with a thin radial layer of GaAs embedded in AlGaAs barriers, grown radially around taper-free GaAs cores. The GaAs layers are thin enough to show quantization, and are quantum wells. Due to their shape, they are referred to as quantum well tubes (QWTs). We have investigated three different nominal QWT thicknesses: 1.5, 2.0, and 6.0 nm. They all show average emission spectra from the QWT with an energy spread corresponding to a thickness variation of ±30%. We observe no thickness gradient along the length of the nanowires. Individual NWs show a number of peaks, corresponding to different QW thicknesses. Apart from the thinnest QWT, the integrated emission from the QWTs shows homogeneous emission intensity along the NW. The thinnest QWTs show patchy emission patterns due to the incomplete coverage of the QWT. We observe a few NWs with larger diameters. The QWTs in these NWs show spatially resolved variations across the NW. An increase in the local thickness of the QWT at the corners blocks the diffusion of carriers from facet to facet, thereby enabling us to visualise the thickness variations of the radial quantum wells.

19.
Nanotechnology ; 31(24): 244002, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32131061

RESUMO

Surface passivation of semiconductor nanowires (NWs) is important for their optoelectronic properties and applications. Here, the in situ passivation effect of an epitaxial InP shell and the corresponding photodetector performance is experimentally studied. Compared with the unpassivated GaAs1- x Sb x core-only NWs, the GaAs1- x Sb x /InP core/shell NWs have shown much stronger photoluminescence and cathodoluminescence intensities. Correspondingly, the fabricated single GaAs1- x Sb x /InP core/shell NW photodetector shows a responsivity of 325.1 A W-1 (@ 1.3 µm and 1.5 V) that is significantly enhanced compared to that of single GaAs1- x Sb x core-only NW photodetectors (143.5 A W-1), with a comparable detectivity of 4.7 × 1010 and 5.3 × 1010 cm√Hz/W, respectively. This is ascribed to the enhanced carrier mobility and carrier concentration by the in situ passivation, which lead to both higher photoconductivity and dark-conductivity. Our results show that in situ passivation is an effective approach for performance enhancement of GaAs1-x Sb x NW based optoelectronic devices.

20.
Proc Natl Acad Sci U S A ; 114(49): 12876-12881, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29158393

RESUMO

Eutectic-related reaction is a special chemical/physical reaction involving multiple phases, solid and liquid. Visualization of a phase reaction of composite nanomaterials with high spatial and temporal resolution provides a key understanding of alloy growth with important industrial applications. However, it has been a rather challenging task. Here, we report the direct imaging and control of the phase reaction dynamics of a single, as-grown free-standing gallium arsenide nanowire encapped with a gold nanoparticle, free from environmental confinement or disturbance, using four-dimensional (4D) electron microscopy. The nondestructive preparation of as-grown free-standing nanowires without supporting films allows us to study their anisotropic properties in their native environment with better statistical character. A laser heating pulse initiates the eutectic-related reaction at a temperature much lower than the melting points of the composite materials, followed by a precisely time-delayed electron pulse to visualize the irreversible transient states of nucleation, growth, and solidification of the complex. Combined with theoretical modeling, useful thermodynamic parameters of the newly formed alloy phases and their crystal structures could be determined. This technique of dynamical control aided by 4D imaging of phase reaction processes on the nanometer-ultrafast time scale opens new venues for engineering various reactions in a wide variety of other systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA