Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 48(4): 1519-1529, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30071531

RESUMO

BACKGROUND/AIMS: The metabolic syndrome (MS) is a cluster of metabolic changes that carry a high risk of cardiovascular disease (CVD). A newly discovered microalga, coccomyxagloeobotrydiformis (CGD), has been reported to improve ischemic stroke and metabolism-related indicators. We observed the therapeutic effects of CGD on MS and postulated the underlying mechanism. METHODS: A diet-induced MS model in rats was used to observe the therapeutic effects of CGD on MS. Blood-glucose and lipid indices were measured using enzymatic colorimetric kits. A biologic data acquisition and analysis system (BL-420F) was used to evaluate cardiac function. Expression of mitochondrial respiratory chain (MRC) enzymes was measured by immunofluorescence staining. The proteins associated with oxidative stress, apoptosis and inflammation were detected by western blotting. RESULTS: Body weight, abdominal circumference, fasting blood glucose , blood pressure as well as serum levels of total cholesterol, triglycerides and low-density lipoprotein-cholesterol were decreased whereas serum levels of high-density lipoprotein-cholesterol was increased in CGD-treated MS rats. CGD increased left-ventricular systolic pressure, left-ventricular end-diastolic pressure, left-ventricular systolic pressure maximum rate of increase and left-ventricular diastolic pressure maximum rate of decrease in MS rats with cardiovascular complications. CGD up-regulated expression of adenosine monophosphate-activated protein kinase and peroxisome proliferator activated receptor gamma coactivator 1-alpha in the heart, adipose tissue and skeletal muscle. Expression of the MRC subunits of ATPase 6, cytochrome b and succinate dehydrogenase complex, subunit-A was increased whereas that of uncoupling protein-2 decreased in different tissues. CGD showed anti-oxidation effects by increasing expression of superoxide dismutase and decreasing that of malondialdehyde. High expression of Bcl-2 and low expression of Bax and caspase-3 supported the anti-apoptotic effect of CGD on the cardiovascular complications of MS. CONCLUSION: CGD has a therapeutic effect on MS and associated cardiovascular complications by eliciting mitochondrial protection and having anti-oxidation and anti-apoptosis effects. CGD could be used for MS treatment.


Assuntos
Síndrome Metabólica/patologia , Microalgas , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Glicemia/análise , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , HDL-Colesterol/sangue , Modelos Animais de Doenças , Ácidos Linolênicos/farmacologia , Ácidos Linolênicos/uso terapêutico , Masculino , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Microalgas/química , Microalgas/metabolismo , Miocárdio/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Tropomodulina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Desacopladora 2/metabolismo
2.
Cell Physiol Biochem ; 43(3): 959-968, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28957804

RESUMO

BACKGROUND/AIMS: The direct consequence of metabolic syndrome (MS) is the increased morbidity and mortality caused by the heart disease. We tried to explain why the heart is more severely damaged during MS from the point of mitochondria, the center of cellular metabolism. METHODS: 1. The classic diet induced MS rat model was used to observe the morphological changes of mitochondria by transmission electron microscope (TEM); 2. The expression of mitochondrial DNA (mt-DNA) encoded proteins was observed by immunohistochemistry and Western blot; 3. The expression of mitochondrial ribosomal proteins (MRPs) was observed by real-time PCR. RESULTS: 1. The mitochondrial volume increased but the number was normal in myocardial cells of the MS rats. But in the hepatocytes and skeletal muscle cells, the mitochondrial number decreased; 2.The mt-DNA encoded protein cytochrome b increased significantly in heart but decreased in liver and the ATPase6 increased in liver but decreased in heart of the MS rats; 3. The mRNA levels of MRPS23, MRPL27, MRPL45 and MRPL48 elevated in heart but down-regulated in liver of the MS rats. CONCLUSION: The morphologic and functional alterations of mitochondrion in MS were tissue specific. Heart displays a distinctive pattern of mitochondrial metabolic status compared with other tissues.


Assuntos
DNA Mitocondrial/metabolismo , Cardiopatias/etiologia , Síndrome Metabólica/patologia , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Animais , Citocromos b/metabolismo , Modelos Animais de Doenças , Cardiopatias/metabolismo , Imuno-Histoquímica , Fígado/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA