Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Exp Med ; 221(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38819409

RESUMO

Th17 cell plasticity is crucial for development of autoinflammatory disease pathology. Periodontitis is a prevalent inflammatory disease where Th17 cells mediate key pathological roles, yet whether they exhibit any functional plasticity remains unexplored. We found that during periodontitis, gingival IL-17 fate-mapped T cells still predominantly produce IL-17A, with little diversification of cytokine production. However, plasticity of IL-17 fate-mapped cells did occur during periodontitis, but in the gingiva draining lymph node. Here, some Th17 cells acquired features of Tfh cells, a functional plasticity that was dependent on IL-6. Notably, Th17-to-Tfh diversification was important to limit periodontitis pathology. Preventing Th17-to-Tfh plasticity resulted in elevated periodontal bone loss that was not simply due to increased proportions of conventional Th17 cells. Instead, loss of Th17-to-Tfh cells resulted in reduced IgG levels within the oral cavity and a failure to restrict the biomass of the oral commensal community. Thus, our data identify a novel protective function for a subset of otherwise pathogenic Th17 cells during periodontitis.


Assuntos
Plasticidade Celular , Interleucina-17 , Periodontite , Células Th17 , Células Th17/imunologia , Animais , Periodontite/imunologia , Periodontite/patologia , Plasticidade Celular/imunologia , Interleucina-17/metabolismo , Interleucina-17/imunologia , Camundongos , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Células T Auxiliares Foliculares/imunologia , Gengiva/imunologia , Gengiva/patologia , Imunoglobulina G/imunologia , Perda do Osso Alveolar/imunologia , Perda do Osso Alveolar/patologia
2.
Mucosal Immunol ; 16(2): 167-179, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36623588

RESUMO

Psoriasis is a common chronic inflammatory skin disease with no cure. It is driven by the interleukin (IL)-23/IL-17A axis and type 17 T helper cells; however, recently, group 3 innate lymphoid cells (ILC3s) have also been implicated. Despite being the focus of much research, factors regulating the activity of ILC3s remain incompletely understood. Immune regulatory pathways are particularly important at barrier sites, such as the skin, gut, and lungs, which are exposed to environmental substances and microbes. CD200R1 is an immune regulatory cell surface receptor that inhibits proinflammatory cytokine production in myeloid cells. CD200R1 is also highly expressed on ILCs, where its function remains largely unexplored. We previously observed reduced CD200R1 signaling in psoriasis-affected skin, suggesting that dysregulation may promote disease. Here, we show that contrary to this, psoriasis models are less severe in CD200R1-deficient mice due to reduced IL-17 production. Here, we uncover a key cell-intrinsic role for CD200R1 in promoting IL-23-driven IL-17A production by ILC3s by promoting signal transducer and activator of transcription 3 activation. Therefore, contrary to its inhibitory role in myeloid cells, CD200R1 is required on ILC3 to promote IL-23-stimulated signal transducer and activator of transcription 3 activation, triggering optimal IL-17 production.


Assuntos
Interleucina-17 , Receptores de Orexina , Psoríase , Fator de Transcrição STAT3 , Animais , Camundongos , Imunidade Inata , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Linfócitos , Receptores de Orexina/metabolismo , Psoríase/metabolismo , Fator de Transcrição STAT3/metabolismo
3.
Immun Inflamm Dis ; 10(7): e648, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35759230

RESUMO

INTRODUCTION: The skin immune system is tightly regulated to prevent inappropriate inflammation in response to harmless environmental substances. This regulation is actively maintained by mechanisms including cytokines and cell surface receptors and its loss results in inflammatory disease. In the case of psoriasis, inappropriate immune activation leads to IL-17-driven chronic inflammation, but molecular mechanisms underlying this loss of regulation are not well understood. Immunoglobulin family member CD200 and its receptor, CD200R1, are important regulators of inflammation. Therefore, we determined if this pathway is dysregulated in psoriasis, and how this affects immune cell activity. METHODS: Human skin biopsies were examined by quantitative polymerase chain reaction, flow cytometry, and immunohistochemistry. The role of CD200R1 in regulating psoriasis-like skin inflammation was examined using CD200R1 blocking antibodies in mouse psoriasis models. CD200R1 blocking antibodies were also used in an in vivo neutrophil recruitment assay and in vitro assays to examine macrophage, innate lymphoid cell, γδ T cell, and neutrophil activity. RESULTS: We reveal that CD200 and signaling via CD200R1 are reduced in non-lesional psoriasis skin. In mouse models of psoriasis CD200R1 was shown to limit psoriasis-like inflammation by enhancing acanthosis, CCL20 production and neutrophil recruitment, but surprisingly, macrophage function and IL-17 production were not affected, and neutrophil reactive oxygen species production was reduced. CONCLUSION: Collectively, these data show that CD200R1 affects neutrophil function and limits inflammatory responses in healthy skin by restricting neutrophil recruitment. However, the CD200 pathway is reduced in psoriasis, resulting in a loss of immune control, and increased neutrophil recruitment in mouse models. In conclusion, we highlight CD200R1:CD200 as a pathway that might be targeted to dampen inflammation in patients with psoriasis.


Assuntos
Interleucina-17 , Psoríase , Animais , Anticorpos Bloqueadores , Antígenos CD/metabolismo , Humanos , Imunidade Inata , Inflamação/metabolismo , Linfócitos/metabolismo , Camundongos , Infiltração de Neutrófilos , Receptores de Orexina/genética , Receptores de Orexina/metabolismo
4.
Front Immunol ; 8: 1627, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29225602

RESUMO

Inflammation can be protective or pathogenic depending on context and timeframe. Acute inflammation, including the accumulation of CD4 T cells, accompanies protective immune responses to pathogens, but the presence of activated CD4 T cells at sites of inflammation is associated with chronic inflammatory disease. While significant progress has been made in understanding the migration of CD4 T cells into inflamed sites, the signals that lead to their persistence are poorly characterized. Using a murine ear model of acute inflammation and intravital two-photon imaging, we have dissected the signals that mediate CD4 T cell persistence. We report the unexpected finding that the bioactive lipid, sphingosine-1-phosphate (S1P), is both necessary and sufficient for the persistence of activated CD4 T cells at peripheral tissues in acute inflammation. S1P mediated the enhanced motility of CD4 T cells at inflamed tissues but did not affect their migration to the downstream draining lymph node. We found that sphingosine kinase-1, which regulates S1P production is increased at inflamed sites in mice and in patients with the chronic inflammatory disease, rheumatoid arthritis. Together, these data suggest that S1P, or its regulators, may be key targets to promote or disrupt accumulation of CD4 T cells at inflamed tissues.

5.
Front Immunol ; 6: 456, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441961

RESUMO

Immunological memory is one of the defining features of the adaptive immune system. As key orchestrators and mediators of immunity, CD4 T cells are central to the vast majority of adaptive immune responses. Generated following an immune response, memory CD4 T cells retain pertinent information about their activation environment enabling them to make rapid effector responses upon reactivation. These responses can either benefit the host by hastening the control of pathogens or cause damaging immunopathology. Here, we will discuss the diversity of the memory CD4 T cell pool, the signals that influence the transition of activated T cells into that pool, and highlight how activation requirements differ between naïve and memory CD4 T cells. A greater understanding of these factors has the potential to aid the design of more effective vaccines and to improve regulation of pathologic CD4 T cells, such as in the context of autoimmunity and allergy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA