Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 53(5): 843-53, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24582498

RESUMO

During the cell cycle, DNA duplication in S phase must occur before a cell divides in mitosis. In the intervening G2 phase, mitotic inducers accumulate, which eventually leads to a switch-like rise in mitotic kinase activity that triggers mitotic entry. However, when and how activation of the signaling network that promotes the transition to mitosis occurs remains unclear. We have developed a system to reduce cell-cell variation and increase accuracy of fluorescence quantification in single cells. This allows us to use immunofluorescence of endogenous marker proteins to assess kinetics from fixed cells. We find that mitotic phosphorylations initially occur at the completion of S phase, showing that activation of the mitotic entry network does not depend on protein accumulation through G2. Our data show insights into how mitotic entry is linked to the completion of S phase and forms a quantitative resource for mathematical models of the human cell cycle.


Assuntos
Fase G2/genética , Mitose/genética , Fase S/genética , Proteínas de Bactérias/química , Ciclo Celular , Linhagem Celular Tumoral , Centrossomo/metabolismo , Replicação do DNA , Fibronectinas/química , Marcadores Genéticos , Humanos , Processamento de Imagem Assistida por Computador , Cinética , Cinetocoros/química , Proteínas Luminescentes/química , Microscopia de Fluorescência , Modelos Teóricos , Fosforilação , RNA Interferente Pequeno/metabolismo , Fatores de Tempo
2.
EMBO J ; 36(14): 2161-2176, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28607002

RESUMO

After DNA damage, the cell cycle is arrested to avoid propagation of mutations. Arrest in G2 phase is initiated by ATM-/ATR-dependent signaling that inhibits mitosis-promoting kinases such as Plk1. At the same time, Plk1 can counteract ATR-dependent signaling and is required for eventual resumption of the cell cycle. However, what determines when Plk1 activity can resume remains unclear. Here, we use FRET-based reporters to show that a global spread of ATM activity on chromatin and phosphorylation of ATM targets including KAP1 control Plk1 re-activation. These phosphorylations are rapidly counteracted by the chromatin-bound phosphatase Wip1, allowing cell cycle restart despite persistent ATM activity present at DNA lesions. Combining experimental data and mathematical modeling, we propose a model for how the minimal duration of cell cycle arrest is controlled. Our model shows how cell cycle restart can occur before completion of DNA repair and suggests a mechanism for checkpoint adaptation in human cells.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Proteína Fosfatase 2C/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Humanos , Modelos Biológicos , Modelos Teóricos , Fosforilação , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/metabolismo , Proteína 28 com Motivo Tripartido , Quinase 1 Polo-Like
3.
J Biol Chem ; 285(47): 36427-33, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20864538

RESUMO

Ribosomes synthesizing secretory and membrane proteins are bound to the endoplasmic reticulum (ER) membrane and attach to ribosome-associated membrane proteins such as the Sec61 complex, which forms the protein-conducting channel in the membrane. The ER membrane-resident Hsp40 protein ERj1 was characterized as being able to recruit BiP to ribosomes in solution and to regulate protein synthesis in a BiP-dependent manner. Here, we show that ERj1 and Sec61 are associated with ribosomes at the ER of human cells and that the binding of ERj1 to ribosomes occurs with a binding constant in the picomolar range and is prevented by pretreatment of ribosomes with RNase. However, the affinity of ERj1 for ribosomes dramatically changes upon binding of BiP. This modulation by BiP may be responsible for the dual role of ERj1 at the ribosome, i.e. acting as a recruiting factor for BiP and regulating translation.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Oligopeptídeos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Células Hep G2 , Humanos , Microscopia de Fluorescência , Chaperonas Moleculares , Proteínas Oncogênicas/metabolismo , Proteínas de Ligação a RNA , Ressonância de Plasmônio de Superfície
4.
Artigo em Inglês | MEDLINE | ID: mdl-33444759

RESUMO

How cells maintain vital membrane lipid homeostasis while obtaining most of their constituent fatty acids from a varied diet remains largely unknown. Here, we used transcriptomics, lipidomics, growth and respiration assays, and membrane property analyses in human HEK293 cells or human umbilical vein endothelial cells (HUVEC) to show that the function of AdipoR2 is to respond to membrane rigidification by regulating many lipid metabolism genes. We also show that AdipoR2-dependent membrane homeostasis is critical for growth and respiration in cells challenged with saturated fatty acids. Additionally, we found that AdipoR2 deficiency causes transcriptome and cell physiological defects similar to those observed in SREBP-deficient cells upon SFA challenge. Finally, we compared several genes considered important for lipid homeostasis, namely AdipoR2, SCD, FADS2, PEMT and ACSL4, and found that AdipoR2 and SCD are the most important among these to prevent membrane rigidification and excess saturation when human cells are challenged with exogenous SFAs. We conclude that AdipoR2-dependent membrane homeostasis is one of the primary mechanisms that protects against exogenous SFAs.


Assuntos
Membrana Celular/metabolismo , Células Endoteliais/metabolismo , Ácidos Graxos/metabolismo , Fluidez de Membrana , Receptores de Adiponectina/genética , Membrana Celular/genética , Células Endoteliais/citologia , Ácidos Graxos/genética , Deleção de Genes , Células HEK293 , Humanos , Receptores de Adiponectina/metabolismo , Ativação Transcricional , Transcriptoma
5.
iScience ; 24(6): 102552, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34151225

RESUMO

Liver disease is a major cause of premature death. Oxidative stress in the liver represents a key disease driver. Compounds, such as dimethyl fumarate (DMF), can activate the antioxidant response and are used clinically to treat disease. In this study, we tested the protective properties of DMF before or after paracetamol exposure. Following DMF administration, Nrf2 nuclear translocation was tracked at the single-cell level and target gene transactivation confirmed. Next, the protective properties of DMF were examined following paracetamol exposure. Transcriptomic and biochemical analysis revealed that DMF rescue was underpinned by reduced Nf-kB and TGF-ß signaling and cell senescence. Following on from these studies, we employed a Zebrafish model to study paracetamol exposure in vivo. We combined a genetically modified Zebrafish model, expressing green fluorescent protein exclusively in the liver, with automated microscopy. Pre-treatment with DMF, prior to paracetamol exposure, led to reduced liver damage in Zebrafish demonstrating protective properties.

6.
SLAS Discov ; 25(6): 605-617, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32441189

RESUMO

Modified messenger RNAs (mRNAs) hold great potential as therapeutics by using the body's own processes for protein production. However, a key challenge is efficient delivery of therapeutic mRNA to the cell cytosol and productive protein translation. Lipid nanoparticles (LNPs) are the most clinically advanced system for nucleic acid delivery; however, a relatively narrow therapeutic index makes them unsuitable for many therapeutic applications. A key obstacle to the development of more potent LNPs is a limited mechanistic understanding of the interaction of LNPs with cells. To address this gap, we performed an arrayed CRISPR screen to identify novel pathways important for the functional delivery of MC3 lipid-based LNP encapsulated mRNA (LNP-mRNA). Here, we have developed and validated a robust, high-throughput screening-friendly phenotypic assay to identify novel targets that modulate productive LNP-mRNA delivery. We screened the druggable genome (7795 genes) and validated 44 genes that either increased (37 genes) or inhibited (14 genes) the productive delivery of LNP-mRNA. Many of these genes clustered into families involved with host cell transcription, protein ubiquitination, and intracellular trafficking. We show that both UDP-glucose ceramide glucosyltransferase and V-type proton ATPase can significantly modulate the productive delivery of LNP-mRNA, increasing and decreasing, respectively, with both genetic perturbation and by small-molecule inhibition. Taken together, these findings shed new light into the molecular machinery regulating the delivery of LNPs into cells and improve our mechanistic understanding of the cellular processes modulating the interaction of LNPs with cells.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Terapia Genética/tendências , Nanopartículas/química , RNA Mensageiro/genética , Técnicas de Transferência de Genes/tendências , Genoma Humano/genética , Ensaios de Triagem em Larga Escala/métodos , Humanos , Lipídeos/química , Lipídeos/genética , Lipídeos/uso terapêutico , Nanopartículas/uso terapêutico , RNA Mensageiro/uso terapêutico
7.
Nat Commun ; 11(1): 4903, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994412

RESUMO

The CRISPR-Cas9 system has increased the speed and precision of genetic editing in cells and animals. However, model generation for drug development is still expensive and time-consuming, demanding more target flexibility and faster turnaround times with high reproducibility. The generation of a tightly controlled ObLiGaRe doxycycline inducible SpCas9 (ODInCas9) transgene and its use in targeted ObLiGaRe results in functional integration into both human and mouse cells culminating in the generation of the ODInCas9 mouse. Genomic editing can be performed in cells of various tissue origins without any detectable gene editing in the absence of doxycycline. Somatic in vivo editing can model non-small cell lung cancer (NSCLC) adenocarcinomas, enabling treatment studies to validate the efficacy of candidate drugs. The ODInCas9 mouse allows robust and tunable genome editing granting flexibility, speed and uniformity at less cost, leading to high throughput and practical preclinical in vivo therapeutic testing.


Assuntos
Sistemas CRISPR-Cas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Descoberta de Drogas/métodos , Edição de Genes/métodos , Neoplasias Pulmonares/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteína 9 Associada à CRISPR/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Doxiciclina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Vetores Genéticos/genética , Células HEK293 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Neoplasias Pulmonares/genética , Masculino , Camundongos , Camundongos Transgênicos , RNA Guia de Cinetoplastídeos/genética , Recombinação Genética/efeitos dos fármacos , Reprodutibilidade dos Testes , Ativação Transcricional/efeitos dos fármacos , Transfecção/métodos , Transgenes/genética
8.
Stem Cell Res ; 29: 220-231, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29734117

RESUMO

Recent studies have reported significant advances in the differentiation of human pluripotent stem cells to clinically relevant cell types such as the insulin producing beta-like cells and motor neurons. However, many of the current differentiation protocols lead to heterogeneous cell cultures containing cell types other than the targeted cell fate. Genetically modified human pluripotent stem cells reporting the expression of specific genes are of great value for differentiation protocol optimization and for the purification of relevant cell populations from heterogeneous cell cultures. Here we present the generation of human induced pluripotent stem cell (iPSC) lines with a GFP reporter inserted in the endogenous NKX6.1 locus. Characterization of the reporter lines demonstrated faithful GFP labelling of NKX6.1 expression during pancreas and motor neuron differentiation. Cell sorting and gene expression profiling by RNA sequencing revealed that NKX6.1-positive cells from pancreatic differentiations closely resemble human beta cells. Furthermore, functional characterization of the isolated cells demonstrated that glucose-stimulated insulin secretion is mainly confined to the NKX6.1-positive cells. We expect that the NKX6.1-GFP iPSC lines and the results presented here will contribute to the further refinement of differentiation protocols and characterization of hPSC-derived beta cells and motor neurons for disease modelling and cell replacement therapies.


Assuntos
Diferenciação Celular , Genes Reporter , Loci Gênicos , Proteínas de Fluorescência Verde , Proteínas de Homeodomínio/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Secretoras de Insulina/metabolismo , Neurônios Motores/metabolismo , Linhagem Celular , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Neurônios Motores/citologia
9.
Front Genet ; 6: 63, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774166

RESUMO

The DNA damage response (DDR) has two main goals, to repair the damaged DNA and to communicate the presence of damaged DNA. This communication allows the adaptation of cellular behavior to minimize the risk associated with DNA damage. In particular, cell cycle progression must be adapted after a DNA-damaging insult, and cells either pause or terminally exit the cell cycle during a DDR. As cells can accumulate mutations after a DDR due to error-prone DNA repair, terminal cell cycle exit may prevent malignant transformation. The tumor suppressor p53 plays a key role in promoting terminal cell cycle exit. Interestingly, p53 has been implicated in communication of a stress response to surrounding cells, known as the bystander response. Recently, surrounding cells have also been shown to affect the damaged cell, suggesting the presence of intercellular feedback loops. How such feedback may affect terminal cell cycle exit remains unclear, but its presence calls for caution in evaluating cellular outcome without controlling the cellular surrounding. In addition, such feedback may contribute to how the cellular environment affects malignant transformation after DNA damage.

10.
Cell Cycle ; 13(17): 2733-43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25486360

RESUMO

Upon DNA damage, cell cycle progression is temporally blocked to avoid propagation of mutations. While transformed cells largely maintain the competence to recover from a cell cycle arrest, untransformed cells past the G1/S transition lose mitotic inducers, and thus the ability to resume cell division. This permanent cell cycle exit depends on p21, p53, and APC/C(Cdh1). However, when and how permanent cell cycle exit occurs remains unclear. Here, we have investigated the cell cycle response to DNA damage in single cells that express Cyclin B1 fused to eYFP at the endogenous locus. We find that upon DNA damage Cyclin B1-eYFP continues to accumulate up to a threshold level, which is reached only in G2 phase. Above this threshold, a p21 and p53-dependent nuclear translocation required for APC/C(Cdh1)-mediated Cyclin B1-eYFP degradation is initiated. Thus, cell cycle exit is decoupled from activation of the DNA damage response in a manner that correlates to Cyclin B1 levels, suggesting that G2 activities directly feed into the decision for cell cycle exit. Once Cyclin B1-eYFP nuclear translocation occurs, checkpoint inhibition can no longer promote mitotic entry or re-expression of mitotic inducers, suggesting that nuclear translocation of Cyclin B1 marks the restriction point for permanent cell cycle exit in G2 phase.


Assuntos
Pontos de Checagem do Ciclo Celular , Núcleo Celular/metabolismo , Ciclina B1/metabolismo , Fase G2 , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Marcação de Genes , Humanos , Transporte Proteico , Proteólise , Proteína Supressora de Tumor p53/metabolismo
11.
Mol Cell Biol ; 31(6): 1160-73, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21245388

RESUMO

Mammalian ribosome-associated complex (mRAC), consisting of the J-domain protein MPP11 and the atypical Hsp70 homolog (70-homolog) Hsp70L1, can partly complement the function of RAC, which is the homologous complex from Saccharomyces cerevisiae. RAC is the J-domain partner exclusively of the 70-homolog Ssb, which directly and independently of RAC binds to the ribosome. We here show that growth defects due to mRAC depletion in HeLa cells resemble those of yeast strains lacking RAC. Functional conservation, however, did not extend to the 70-homolog partner of mRAC. None of the major human 70-homologs was able to complement the growth defects of yeast strains lacking Ssb or was bound to ribosomes in an Ssb-like manner. Instead, our data suggest that mRAC was a specific partner of human Hsp70 but not of its close homolog Hsc70. On a mechanistic level, ATP binding, but not ATP hydrolysis, by Hsp70L1 affected mRAC's function as a J-domain partner of Hsp70. The combined data indicate that, while functionally conserved, yeast and mammalian cells have evolved distinct solutions to ensure that Hsp70-type chaperones can efficiently assist the biogenesis of newly synthesized polypeptide chains.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Oncogênicas/metabolismo , Ribossomos/metabolismo , Trifosfato de Adenosina/metabolismo , Proliferação de Células , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP70/genética , Células HeLa , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Oncogênicas/genética , Ligação Proteica , Proteínas de Ligação a RNA , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA