Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 69(4): 383-390, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37379507

RESUMO

Over the last years, the use of peripheral blood-derived big datasets in combination with machine learning technology has accelerated the understanding, prediction, and management of pulmonary and critical care conditions. The goal of this article is to provide readers with an introduction to the methods and applications of blood omics and other multiplex-based technologies in the pulmonary and critical care medicine setting to better appreciate the current literature in the field. To accomplish that, we provide essential concepts needed to rationalize this approach and introduce readers to the types of molecules that can be obtained from the circulating blood to generate big datasets; elaborate on the differences between bulk, sorted, and single-cell approaches; and the basic analytical pipelines required for clinical interpretation. Examples of peripheral blood-derived big datasets used in recent literature are presented, and limitations of that technology are highlighted to qualify both the current and future value of these methodologies.


Assuntos
Cuidados Críticos , Aprendizado de Máquina , Humanos , Previsões
2.
Am J Respir Cell Mol Biol ; 66(6): 623-637, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35286819

RESUMO

Patients with chronic obstructive pulmonary disease (COPD)-pulmonary emphysema often develop locomotor muscle dysfunction, which entails reduced muscle mass and force-generation capacity and is associated with worse outcomes, including higher mortality. Myogenesis contributes to adult muscle integrity during injury-repair cycles. Injurious events crucially occur in the skeletal muscles of patients with COPD in the setting of exacerbations and infections, which lead to acute decompensations for limited periods of time, after which patients typically fail to recover the baseline status they had before the acute event. Autophagy, which is dysregulated in muscles from patients with COPD, is a key regulator of muscle stem-satellite- cells activation and myogenesis, yet very little research has so far mechanistically investigated the role of autophagy dysregulation in COPD muscles. Using a genetically inducible interleukin-13-driven pulmonary emphysema model leading to muscle dysfunction, and confirmed with a second genetic animal model, we found a significant myogenic dysfunction associated with the reduced proliferative capacity of satellite cells. Transplantation experiments followed by lineage tracing suggest that an intrinsic defect in satellite cells, and not in the COPD environment, plays a dominant role in the observed myogenic dysfunction. RNA sequencing analysis and direct observation of COPD mice satellite cells suggest dysregulated autophagy. Moreover, while autophagy flux experiments with bafilomycin demonstrated deacceleration of autophagosome turnover in COPD mice satellite cells, spermidine-induced autophagy stimulation leads to a higher replication rate and myogenesis in these animals. Our data suggest that pulmonary emphysema causes disrupted myogenesis, which could be improved with stimulation of autophagy and satellite cells activation, leading to an attenuated muscle dysfunction.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Autofagia , Humanos , Camundongos , Desenvolvimento Muscular , Músculo Esquelético , Enfisema Pulmonar/etiologia
3.
Am J Physiol Cell Physiol ; 323(4): C974-C989, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993519

RESUMO

Locomotor skeletal muscle dysfunction is a relevant comorbidity of chronic obstructive pulmonary disease (COPD) and is strongly associated with worse clinical outcomes including higher mortality. Over the last decades, a large body of literature helped characterize the process, defining the disruptive muscle phenotype caused by COPD that involves reduction in muscle mass, force-generation capacity, fatigue-tolerance, and regenerative potential following injury. A major limitation in the field has been the scarcity of well-calibrated animal models to conduct mechanistic research based on loss- and gain-of-function studies. This article provides an overall description of the process, the tools available to mechanistically investigate it, and the potential role of mitochondrially driven metabolic signals on the regulation muscle regeneration after injury in COPD. Finally, a description of future avenues to further expand on the area is proposed based on very recent evidence involving mitochondrial metabolic cues affecting myogenesis.


Assuntos
Doenças Musculares , Doença Pulmonar Obstrutiva Crônica , Animais , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo
4.
Am J Respir Cell Mol Biol ; 65(3): 259-271, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33909984

RESUMO

Patients with pulmonary emphysema often develop locomotor muscle dysfunction, which is independently associated with disability and higher mortality in that population. Muscle dysfunction entails reduced force generation capacity, which partially depends on fibers' oxidative potential, yet very little mechanistic research has focused on muscle respiration in pulmonary emphysema. Using a recently established animal model of pulmonary emphysema-driven skeletal muscle dysfunction, we found downregulation of SDHC (succinate dehydrogenase subunit C) in association with lower oxygen consumption and fatigue tolerance in locomotor muscles. Reduced SDH activity has been previously observed in muscles from patients with pulmonary emphysema, and we found that SDHC is required to support respiration in cultured muscle cells. Moreover, in vivo gain of SDH function in emphysema animals' muscles resulted in better oxygen consumption rate and fatigue tolerance. These changes correlated with a larger number of relatively more oxidative type 2-A and 2X fibers and a reduced amount of 2B fibers. Our data suggest that SDHC is a key regulator of respiration and fatigability in pulmonary emphysema-driven skeletal muscles, which could be impactful in developing strategies aimed at attenuating this comorbidity.


Assuntos
Fadiga/enzimologia , Proteínas de Membrana/metabolismo , Músculo Esquelético/enzimologia , Consumo de Oxigênio , Enfisema Pulmonar/enzimologia , Animais , Modelos Animais de Doenças , Fadiga/genética , Fadiga/patologia , Fadiga/fisiopatologia , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Enfisema Pulmonar/genética , Enfisema Pulmonar/patologia , Enfisema Pulmonar/fisiopatologia
5.
Am J Physiol Regul Integr Comp Physiol ; 320(3): R250-R257, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33434104

RESUMO

The COVID19 pandemic has caused more than a million of deaths worldwide, primarily due to complications from COVID19-associated acute respiratory distress syndrome (ARDS). Controversy surrounds the circulating cytokine/chemokine profile of COVID19-associated ARDS, with some groups suggesting that it is similar to patients without COVID19 ARDS and others observing substantial differences. Moreover, although a hyperinflammatory phenotype associates with higher mortality in non-COVID19 ARDS, there is little information on the inflammatory landscape's association with mortality in patients with COVID19 ARDS. Even though the circulating leukocytes' transcriptomic signature has been associated with distinct phenotypes and outcomes in critical illness including ARDS, it is unclear whether the mortality-associated inflammatory mediators from patients with COVID19 are transcriptionally regulated in the leukocyte compartment. Here, we conducted a prospective cohort study of 41 mechanically ventilated patients with COVID19 infection using highly calibrated methods to define the levels of plasma cytokines/chemokines and their gene expressions in circulating leukocytes. Plasma IL1RA and IL8 were found positively associated with mortality, whereas RANTES and EGF negatively associated with that outcome. However, the leukocyte gene expression of these proteins had no statistically significant correlation with mortality. These data suggest a unique inflammatory signature associated with severe COVID19.


Assuntos
COVID-19/metabolismo , COVID-19/patologia , Inflamação/metabolismo , Síndrome do Desconforto Respiratório/mortalidade , SARS-CoV-2 , Idoso , COVID-19/mortalidade , Estudos de Coortes , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade
6.
Adv Exp Med Biol ; 1303: 129-138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33788191

RESUMO

Dysfunction of locomotor muscles is frequent in chronic pulmonary diseases and strongly associated with worse outcomes including higher mortality. Although these associations have been corroborated over the last decades, there is poor mechanistic understanding of the process, in part due to the lack of adequate animal models to investigate this process. Most of the mechanistic research has so far been accomplished using relevant individual stimuli such as low oxygen or high CO2 delivered to otherwise healthy animals as surrogates of the phenomena occurring in the clinical setting. This review advocates for the development of a syndromic model in which skeletal muscle dysfunction is investigated as a comorbidity of a well-validated pulmonary disease model, which could potentially allow discovering meaningful mechanisms and pathways and lead to more substantial progress to treat this devastating condition.


Assuntos
Pneumopatias , Insuficiência Respiratória , Animais , Comorbidade , Modelos Animais , Músculo Esquelético
7.
Am J Respir Cell Mol Biol ; 62(1): 74-86, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31264907

RESUMO

High CO2 retention, or hypercapnia, is associated with worse outcomes in patients with chronic pulmonary diseases. Skeletal muscle wasting is also an independent predictor of poor outcomes in patients with acute and chronic pulmonary diseases. Although previous evidence indicates that high CO2 accelerates skeletal muscle catabolism via AMPK (AMP-activated protein kinase)-FoxO3a-MuRF1 (E3-ubiquitin ligase muscle RING finger protein 1), little is known about the role of high CO2 in regulating skeletal muscle anabolism. In the present study, we investigated the potential role of high CO2 in attenuating skeletal muscle protein synthesis. We found that locomotor muscles from patients with chronic CO2 retention demonstrated depressed ribosomal gene expression in comparison with locomotor muscles from non-CO2-retaining individuals, and analysis of the muscle proteome of normo- and hypercapnic mice indicates reduction of important components of ribosomal structure and function. Indeed, mice chronically kept under a high-CO2 environment show evidence of skeletal muscle downregulation of ribosomal biogenesis and decreased protein synthesis as measured by the incorporation of puromycin into skeletal muscle. Hypercapnia did not regulate the mTOR pathway, and rapamycin-induced deactivation of mTOR did not cause a decrease in ribosomal gene expression. Loss-of-function studies in cultured myotubes showed that AMPKα2 regulates CO2-mediated reductions in ribosomal gene expression and protein synthesis. Although previous evidence has implicated TIF1A (transcription initiation factor-1α) and KDM2A (lysine-specific demethylase 2A) in AMPK-driven regulation of ribosomal gene expression, we found that these mediators were not required in the high CO2-induced depressed protein anabolism. Our research supports future studies targeting ribosomal biogenesis and protein synthesis to alleviate the effects of high CO2 on skeletal muscle turnover.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Dióxido de Carbono/efeitos adversos , Regulação para Baixo/efeitos dos fármacos , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Adolescente , Animais , Proteínas F-Box/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Pneumopatias/etiologia , Pneumopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Proteínas Nucleares/metabolismo , Ribossomos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Crit Care ; 24(1): 566, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958059

RESUMO

BACKGROUND: Reduced body weight at the time of intensive care unit (ICU) admission is associated with worse survival, and a paradoxical benefit of obesity has been suggested in critical illness. However, no research has addressed the survival effects of disaggregated body constituents of dry weight such as skeletal muscle, fat, and bone density. METHODS: Single-center, prospective observational cohort study of medical ICU (MICU) patients from an academic institution in the USA. Five hundred and seven patients requiring CT scanning of chest or abdomen within the first 24 h of ICU admission were evaluated with erector spinae muscle (ESM) and subcutaneous adipose tissue (SAT) areas and with bone density determinations at the time of ICU admission, which were correlated with clinical outcomes accounting for potential confounders. RESULTS: Larger admission ESM area was associated with decreased odds of 6-month mortality (OR per cm2, 0.96; 95% CI, 0.94-0.97; p < 0.001) and disability at discharge (OR per cm2, 0.98; 95% CI, 0.96-0.99; p = 0.012). Higher bone density was similarly associated with lower odds of mortality (OR per 100 HU, 0.69; 95% CI, 0.49-0.96; p = 0.027) and disability at discharge (OR per 100 HU, 0.52; 95% CI, 0.37-0.74; p < 0.001). SAT area was not significantly associated with these outcomes' measures. Multivariable modeling indicated that ESM area remained significantly associated with 6-month mortality and survival after adjusting for other covariates including preadmission comorbidities, albumin, functional independence before admission, severity scores, age, and exercise capacity. CONCLUSION: In our cohort, ICU admission skeletal muscle mass measured with ESM area and bone density were associated with survival and disability at discharge, although muscle area was the only component that remained significantly associated with survival after multivariable adjustments. SAT had no association with the analyzed outcome measures.


Assuntos
Tecido Adiposo/fisiopatologia , Composição Corporal , Osso e Ossos/fisiopatologia , Músculo Esquelético/fisiopatologia , Idoso , Estudos de Coortes , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Alta do Paciente/estatística & dados numéricos , Estudos Prospectivos , Estudos Retrospectivos
9.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023946

RESUMO

Skeletal muscle dysfunction is a major comorbidity in chronic obstructive pulmonary disease (COPD) and other pulmonary conditions. Chronic CO2 retention, or hypercapnia, also occur in some of these patients. Both muscle dysfunction and hypercapnia associate with higher mortality in these populations. Over the last years, we have established a mechanistic link between hypercapnia and skeletal muscle dysfunction, which is regulated by AMPK and causes depressed anabolism via reduced ribosomal biogenesis and accelerated catabolism via proteasomal degradation. In this review, we discuss the main findings linking AMPK with hypercapnic pulmonary disease both in the lungs and skeletal muscles, and also outline potential avenues for future research in the area based on knowledge gaps and opportunities to expand mechanistic research with translational implications.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hipercapnia/metabolismo , Músculo Esquelético/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Animais , Dióxido de Carbono/metabolismo , Comorbidade , Humanos , Atrofia Muscular/metabolismo , Ribossomos/metabolismo
10.
Am J Respir Crit Care Med ; 198(2): 175-186, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29554438

RESUMO

Skeletal muscle dysfunction occurs in patients with chronic obstructive pulmonary disease (COPD) and affects both ventilatory and nonventilatory muscle groups. It represents a very important comorbidity that is associated with poor quality of life and reduced survival. It results from a complex combination of functional, metabolic, and anatomical alterations leading to suboptimal muscle work. Muscle atrophy, altered fiber type and metabolism, and chest wall remodeling, in the case of the respiratory muscles, are relevant etiological contributors to this process. Muscle dysfunction worsens during COPD exacerbations, rendering patients progressively less able to perform activities of daily living, and it is also associated with poor outcomes. Muscle recovery measures consisting of a combination of pulmonary rehabilitation, optimized nutrition, and other strategies are associated with better prognosis when administered in stable patients as well as after exacerbations. A deeper understanding of this process' pathophysiology and clinical relevance will facilitate the use of measures to alleviate its effects and potentially improve patients' outcomes. In this review, a general overview of skeletal muscle dysfunction in COPD is offered to highlight its relevance and magnitude to expert practitioners and scientists as well as to the average clinician dealing with patients with chronic respiratory diseases.


Assuntos
Debilidade Muscular/etiologia , Debilidade Muscular/terapia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/etiologia , Atrofia Muscular/terapia , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Músculos Respiratórios/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Comorbidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
Adv Exp Med Biol ; 967: 71-81, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29047082

RESUMO

Pulmonary hypertension (PH) is characterized by increased vasoconstriction and smooth muscle cell hyperplasia driving pathological vascular remodeling of arterial vessels. In this short review, we discuss the primary source of reactive oxygen species (ROS) and nitric oxide (NO) relevant to PH and the mechanism by which dysregulation of their production contributes to PH. Specifically, hypoxia-induced PH is associated with diminished endothelial nitric oxide synthase (eNOS)-derived NO production and increased production of superoxide (O2•-) through eNOS uncoupling and defective mitochondrial respiration. This drives the inhibition of the NO/soluble guanylate cyclase (sGC) pathway and activation of the transcription factor hypoxia-inducible factor-1α (HIF-1α) with consequential dysregulation of the pulmonary vasculature. Therapeutics aimed at increasing NO or cGMP bioavailabilities are amenable to hypoxia disease-induced PH. Similarly, strategies targeting HIF-1α are now considered. Overall, pulmonary hypertension including hypoxia-induced PH offers unique opportunities for the rational development of therapeutics centered on modulating redox signaling.


Assuntos
Hipertensão Pulmonar/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Animais , Humanos , Hipertensão Pulmonar/fisiopatologia , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Superóxidos/metabolismo
13.
J Biol Chem ; 290(14): 9183-94, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25691571

RESUMO

Patients with chronic obstructive pulmonary disease, acute lung injury, and critical care illness may develop hypercapnia. Many of these patients often have muscle dysfunction which increases morbidity and impairs their quality of life. Here, we investigated whether hypercapnia leads to skeletal muscle atrophy. Mice exposed to high CO2 had decreased skeletal muscle wet weight, fiber diameter, and strength. Cultured myotubes exposed to high CO2 had reduced fiber diameter, protein/DNA ratios, and anabolic capacity. High CO2 induced the expression of MuRF1 in vivo and in vitro, whereas MuRF1(-/-) mice exposed to high CO2 did not develop muscle atrophy. AMP-activated kinase (AMPK), a metabolic sensor, was activated in myotubes exposed to high CO2, and loss-of-function studies showed that the AMPKα2 isoform is necessary for muscle-specific ring finger protein 1 (MuRF1) up-regulation and myofiber size reduction. High CO2 induced AMPKα2 activation, triggering the phosphorylation and nuclear translocation of FoxO3a, and leading to an increase in MuRF1 expression and myotube atrophy. Accordingly, we provide evidence that high CO2 activates skeletal muscle atrophy via AMPKα2-FoxO3a-MuRF1, which is of biological and potentially clinical significance in patients with lung diseases and hypercapnia.


Assuntos
Adenilato Quinase/metabolismo , Dióxido de Carbono/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA , Proteína Forkhead Box O3 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas com Motivo Tripartido , Regulação para Cima
15.
bioRxiv ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37034694

RESUMO

The oxidant hydrogen peroxide serves as a signaling molecule that alters many aspects of cardiovascular functions. Recent studies suggest that cytoglobin - a hemoglobin expressed in the vasculature - may promote electron transfer reactions with proposed functions in hydrogen peroxide decomposition. Here, we determined the extent to which cytoglobin regulates intracellular hydrogen peroxide and established mechanisms. We found that cytoglobin decreased the hyperoxidation of peroxiredoxins and maintained the activity of peroxiredoxin 2 following challenge with exogenous hydrogen peroxide. Cytoglobin promoted a reduced intracellular environment and facilitated the reduction of the thiol-based hydrogen peroxide sensor Hyper7 after bolus addition of hydrogen peroxide. Cytoglobin also limited the inhibitory effect of hydrogen peroxide on glycolysis and reversed the oxidative inactivation of the glycolytic enzyme GAPDH. Our results indicate that cytoglobin in cells exists primarily as oxyferrous cytoglobin (CygbFe 2+ -O 2 ) with its cysteine residues in the reduced form. We found that the specific substitution of one of two cysteine residues on cytoglobin (C83A) inhibited the reductive activity of cytoglobin on Hyper7 and GAPDH. Carotid arteries from cytoglobin knockout mice were more sensitive to glycolytic inhibition by hydrogen peroxide than arteries from wildtype mice. Together, these results support a role for cytoglobin in regulating intracellular redox signals associated with hydrogen peroxide through oxidation of its cysteine residues, independent of hydrogen peroxide reaction at its heme center.

16.
Physiol Rep ; 11(17): e15814, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37667413

RESUMO

Cartilage acidic protein-1 (CRTAC1) is produced by several cell types, including Type 2 alveolar epithelial (T2AE) cells that are targeted by SARS-CoV2. Plasma CRTAC1 is known based on proteomic surveys to be low in patients with severe COVID-19. Using an ELISA, we found that patients treated for COVID-19 in an ICU almost uniformly had plasma concentrations of CRTAC1 below those of healthy controls. Magnitude of decrease in CRTAC1 distinguished COVID-19 from other causes of acute respiratory decompensation and correlated with established metrics of COVID-19 severity. CRTAC1 concentrations below those of controls were found in some patients a year after hospitalization with COVID-19, long COVID after less severe COVID-19, or chronic obstructive pulmonary disease. Decreases in CRTAC1 in severe COVID-19 correlated (r = 0.37, p = 0.0001) with decreases in CFP (properdin), which interacts with CRTAC1. Thus, decreases of CRTAC1 associated with severe COVID-19 may result from loss of production by T2AE cells or co-depletion with CFP. Determination of significance of and reasons behind decreased CRTAC1 concentration in a subset of patients with long COVID will require analysis of roles of preexisting lung disease, impact of prior acute COVID-19, age, and other confounding variables in a larger number of patients.


Assuntos
COVID-19 , Proteínas de Ligação ao Cálcio , Humanos , Proteínas de Ligação ao Cálcio/sangue , Síndrome de COVID-19 Pós-Aguda , Proteômica , RNA Viral , SARS-CoV-2
17.
Redox Biol ; 65: 102838, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37573836

RESUMO

Identifying novel regulators of vascular smooth muscle cell function is necessary to further understand cardiovascular diseases. We previously identified cytoglobin, a hemoglobin homolog, with myogenic and cytoprotective roles in the vasculature. The specific mechanism of action of cytoglobin is unclear but does not seem to be related to oxygen transport or storage like hemoglobin. Herein, transcriptomic profiling of injured carotid arteries in cytoglobin global knockout mice revealed that cytoglobin deletion accelerated the loss of contractile genes and increased DNA damage. Overall, we show that cytoglobin is actively translocated into the nucleus of vascular smooth muscle cells through a redox signal driven by NOX4. We demonstrate that nuclear cytoglobin heterodimerizes with the non-histone chromatin structural protein HMGB2. Our results are consistent with a previously unknown function by which a non-erythrocytic hemoglobin inhibits DNA damage and regulates gene programs in the vasculature by modulating the genome-wide binding of HMGB2.


Assuntos
Globinas , Proteína HMGB2 , Animais , Camundongos , Citoglobina/genética , Dano ao DNA , Globinas/genética , Globinas/metabolismo , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Fatores de Transcrição/genética
18.
bioRxiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214992

RESUMO

Identifying novel regulators of vascular smooth muscle cell function is necessary to further understand cardiovascular diseases. We previously identified cytoglobin, a hemoglobin homolog, with myogenic and cytoprotective roles in the vasculature. The specific mechanism of action of cytoglobin is unclear but does not seem to be related to oxygen transport or storage like hemoglobin. Herein, transcriptomic profiling of injured carotid arteries in cytoglobin global knockout mice revealed that cytoglobin deletion accelerated the loss of contractile genes and increased DNA damage. Overall, we show that cytoglobin is actively translocated into the nucleus of vascular smooth muscle cells through a redox signal driven by NOX4. We demonstrate that nuclear cytoglobin heterodimerizes with the non-histone chromatin structural protein HMGB2. Our results are consistent with a previously unknown function by which a non-erythrocytic hemoglobin inhibits DNA damage and regulates gene programs in the vasculature by modulating the genome-wide binding of HMGB2.

19.
Respir Med Case Rep ; 40: 101770, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386282

RESUMO

Lymphomatoid granulomatosis (LG) is an extremely rare disease and is an unusual cause of central airway obstruction (CAO) with no standard of treatment in these conditions. LG is characterized by angioinvasion and angioinfiltration along with lymphohistiocytic cells. We present a 21-year-old female with LG who developed endobronchial lesions causing malignant CAO and acute hypoxic respiratory failure. She was treated with argon plasma coagulation, as well as a self-expandable metallic stent in the left main bronchus. Her stent was removed 4 months later after chemotherapy. Endobronchial stenting may be a useful bridge in patients who are undergoing more definitive treatment.

20.
Clin Epigenetics ; 14(1): 94, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35871090

RESUMO

We recently reported the COVID-19-induced circulating leukocytes DNA methylation profile. Here, we hypothesized that some of these genes would persist differentially methylated after disease resolution. Fifteen participants previously hospitalized for SARS-CoV-2 infection were epityped one year after discharge. Of the 1505 acute illness-induced differentially methylated regions (DMRs) previously identified, we found 71 regions with persisted differentially methylated, with an average of 7 serial CpG positions per DMR. Sixty-four DMRs persisted hypermethylated, and 7 DMR persisted hypomethylated. These data are the first reported evidence that DNA methylation changes in circulating leukocytes endure long after recovery from acute illness.


Assuntos
COVID-19 , Metilação de DNA , Doença Aguda , COVID-19/genética , Ilhas de CpG , Humanos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA