Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Rep ; 42(9): 113146, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37725511

RESUMO

The retinoblastoma family proteins (RBs) and E2F transcription factors are cell-autonomous regulators of cell-cycle progression, but they also impact fate choice in addition to tumor suppression. The range of mechanisms involved remains to be uncovered. Here, we show that RBs, particularly RBL2/p130, repress WNT ligands such as WNT4 and WNT8A, thereby directing ectoderm specification between neural crest to neuroepithelium. RBL2 achieves this function through cell-cycle-dependent cooperation with E2Fs and GCN5 on the regulatory regions of WNT loci, which direct neuroepithelial versus neural crest specification by temporal fluctuations of WNT/ß-catenin and DLL/NOTCH signaling activity. Thus, the RB-E2F bona fide cell-autonomous axis controls cell fate decisions, and RBL2 regulates field effects via WNT ligands. This reveals a non-cell-autonomous function of RBL2-E2F in stem cell and tissue progenitor differentiation that has broader implications for cell-cycle-dependent cell fate specification in organogenesis, adult stem cells, tissue homeostasis, and tumorigenesis.


Assuntos
Padronização Corporal , Proteína do Retinoblastoma , Transdução de Sinais , Humanos , Ciclo Celular , Diferenciação Celular , Divisão Celular , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
2.
Ann Med ; 47(7): 570-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26469375

RESUMO

Translational medicine bridges the gap between discoveries in biomedical science and their safe and effective clinical application. Despite the gross opportunity afforded by modern research for unparalleled advances in this field, the process of translation remains protracted. Efforts to expedite science translation have included the facilitation of interdisciplinary collaboration within both academic and clinical environments in order to generate integrated working platforms fuelling the sharing of knowledge, expertise, and tools to align biomedical research with clinical need. However, barriers to scientific translation remain, and further progress is urgently required. Collective intelligence and crowdsourcing applications offer the potential for global online networks, allowing connection and collaboration between a wide variety of fields. This would drive the alignment of biomedical science with biotechnology, clinical need, and patient experience, in order to deliver evidence-based innovation which can revolutionize medical care worldwide. Here we discuss the critical steps towards implementing collective intelligence in translational medicine using the experience of those in other fields of science and public health.


Assuntos
Pesquisa Biomédica/organização & administração , Crowdsourcing , Pesquisa Translacional Biomédica/organização & administração , Comportamento Cooperativo , Humanos , Inteligência , Comunicação Interdisciplinar , Inovação Organizacional
3.
Stem Cells Dev ; 23(13): 1437-51, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24564584

RESUMO

Human stem cell research represents an exceptional opportunity for regenerative medicine and the surgical reconstruction of the craniomaxillofacial complex. The correct architecture and function of the vastly diverse tissues of this important anatomical region are critical for life supportive processes, the delivery of senses, social interaction, and aesthetics. Craniomaxillofacial tissue loss is commonly associated with inflammatory responses of the surrounding tissue, significant scarring, disfigurement, and psychological sequelae as an inevitable consequence. The in vitro production of fully functional cells for skin, muscle, cartilage, bone, and neurovascular tissue formation from human stem cells, may one day provide novel materials for the reconstructive surgeon operating on patients with both hard and soft tissue deficit due to cancer, congenital disease, or trauma. However, the clinical translation of human stem cell technology, including the application of human pluripotent stem cells (hPSCs) in novel regenerative therapies, faces several hurdles that must be solved to permit safe and effective use in patients. The basic biology of hPSCs remains to be fully elucidated and concerns of tumorigenicity need to be addressed, prior to the development of cell transplantation treatments. Furthermore, functional comparison of in vitro generated tissue to their in vivo counterparts will be necessary for confirmation of maturity and suitability for application in reconstructive surgery. Here, we provide an overview of human stem cells in disease modeling, drug screening, and therapeutics, while also discussing the application of regenerative medicine for craniomaxillofacial tissue deficit and surgical reconstruction.


Assuntos
Regeneração Óssea , Traumatismos Craniocerebrais/terapia , Anormalidades Maxilofaciais/terapia , Células-Tronco Pluripotentes/fisiologia , Medicina Regenerativa , Animais , Diferenciação Celular , Epigênese Genética , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Procedimentos de Cirurgia Plástica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA