Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Environ ; 40(12): 3031-3042, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28910491

RESUMO

A novel glyphosate resistance double point mutation (T102I/P106S, TIPS) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene has been recently identified for the first time only in the weed species Eleusine indica. Quantification of plant resistance cost associated with the TIPS and the often reported glyphosate resistance single P106S mutation was performed. A significant resistance cost (50% in seed number currency) associated with the homozygous TIPS but not the homozygous P106S EPSPS variant was identified in E. indica plants. The resistance cost associated with the TIPS mutation escalated to 85% in plants under resource competition with rice crops. The resistance cost was not detected in nonhomozygous TIPS plants denoting the recessive nature of the cost associated with the TIPS allele. An excess of 11-fold more shikimate and sixfold more quinate in the shikimate pathway was detected in TIPS plants in the absence of glyphosate treatment compared to wild type, whereas no changes in these compounds were observed in P106S plants when compared to wild type. TIPS plants show altered metabolite levels in several other metabolic pathways that may account for the expression of the observed resistance cost.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Oryza/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Substituição de Aminoácidos , Glicina/farmacologia , Mutação , Oryza/efeitos dos fármacos , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glifosato
2.
Plant Physiol ; 167(4): 1440-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25717039

RESUMO

Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I+P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Eleusine/enzimologia , Glicina/análogos & derivados , Resistência a Herbicidas/genética , Herbicidas/farmacologia , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Substituição de Aminoácidos , Evolução Biológica , Eleusine/efeitos dos fármacos , Eleusine/genética , Glicina/farmacologia , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glifosato
3.
Pest Manag Sci ; 77(9): 3881-3889, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33650211

RESUMO

The scale of herbicide resistance within a cropping region can be estimated and monitored using surveys of weed populations. The current approach to herbicide resistance surveys is time-consuming, logistically challenging and costly. Here we review past and current approaches used in herbicide resistance surveys with the aims of (i) defining effective survey methodologies, (ii) highlighting opportunities for improving efficiencies through the use of new technologies and (iii) identifying the value of repeated region-wide herbicide resistance surveys. One of the most extensively surveyed areas of the world's cropping regions is the Australian grain production region, with >2900 fields randomly surveyed in each of three surveys conducted over the past 15 years. Consequently, recommended methodologies are based on what has been learned from the Australian experience. Traditional seedling-based herbicide screening assays remain the most reliable and widely applicable method for characterizing resistance in weed populations. The use of satellite or aerial imagery to plan collections and image analysis to rapidly quantify screening results could complement traditional resistance assays by increasing survey efficiency and sampling accuracy. Global management of herbicide-resistant weeds would benefit from repeated and standardized surveys that track herbicide resistance evolution within and across cropping regions. © 2021 Society of Chemical Industry.


Assuntos
Resistência a Herbicidas , Herbicidas , Austrália , Herbicidas/farmacologia , Plantas Daninhas , Controle de Plantas Daninhas
4.
Pest Manag Sci ; 73(6): 1091-1100, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28094896

RESUMO

BACKGROUND: An Eleusine indica population has evolved resistance to glufosinate, a major post-emergence herbicide of global agriculture. This population was analysed for target-site (glutamine synthetase) and non-target-site (glufosinate uptake, translocation and metabolism) resistance mechanisms. RESULTS: Glutamine synthetase (GS) activity extracted from susceptible (S) and resistant (R*) plants was equally sensitive to glufosinate inhibition, with IC50 values of 0.85 mm and 0.99 mm, respectively. The extractable GS activity was also similar in S and R* samples. Foliar uptake of [14 C]-glufosinate did not differ in S and R* plants, nor did glufosinate net uptake in leaf discs. Translocation of [14 C]-glufosinate into untreated shoots and roots was also similar in both populations, with 44% to 47% of the herbicide translocated out from the treated leaf 24 h after treatment. The HPLC and LC-MS analysis of glufosinate metabolism revealed no major metabolites in S or R* leaf tissue. CONCLUSIONS: Glufosinate resistance in this resistant population is not due to an insensitive GS, or increased activity, or altered glufosinate uptake and translocation, or enhanced glufosinate metabolism. Thus, target-site resistance is likely excluded and the exact resistance mechanism(s) remain to be determined. © 2017 Society of Chemical Industry.


Assuntos
Aminobutiratos , Eleusine/metabolismo , Herbicidas , Aminobutiratos/metabolismo , Glutamato-Amônia Ligase/metabolismo , Resistência a Herbicidas , Herbicidas/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA