Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(17): 9452-9474, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37602373

RESUMO

Prophages control their lifestyle to either be maintained within the host genome or enter the lytic cycle. Bacillus subtilis contains the SPß prophage whose lysogenic state depends on the MrpR (YopR) protein, a key component of the lysis-lysogeny decision system. Using a historic B. subtilis strain harboring the heat-sensitive SPß c2 mutant, we demonstrate that the lytic cycle of SPß c2 can be induced by heat due to a single nucleotide exchange in the mrpR gene, rendering the encoded MrpRG136E protein temperature-sensitive. Structural characterization revealed that MrpR is a DNA-binding protein resembling the overall fold of tyrosine recombinases. MrpR has lost its recombinase function and the G136E exchange impairs its higher-order structure and DNA binding activity. Genome-wide profiling of MrpR binding revealed its association with the previously identified SPbeta repeated element (SPBRE) in the SPß genome. MrpR functions as a master repressor of SPß that binds to this conserved element to maintain lysogeny. The heat-inducible excision of the SPß c2 mutant remains reliant on the serine recombinase SprA. A suppressor mutant analysis identified a previously unknown component of the lysis-lysogeny management system that is crucial for the induction of the lytic cycle of SPß.


Assuntos
Fagos Bacilares , Bacteriófagos , Proteínas Virais , Fagos Bacilares/genética , Bacillus subtilis/genética , Lisogenia/genética , Prófagos/genética , Recombinases/genética , Proteínas Virais/metabolismo
2.
BMC Biotechnol ; 18(1): 20, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615011

RESUMO

BACKGROUND: Recombinant production of amebic cysteine proteases using Escherichia coli cells as the bacterial system has become a challenging effort, with protein insolubility being the most common issue. Since many of these enzymes need a native conformation stabilized by disulfide bonds, an elaborate process of oxidative folding is usually demanded to get a functional protein. The cytoplasm of E. coli SHuffle Express cells owns an enhanced ability to properly fold proteins with disulfide bonds. Because of this cellular feature, it was possible to assume that this strain represents a reliable expression system and worthwhile been considered as an efficient bacterial host for the recombinant production of amebic cysteine proteases. RESULTS: Using E. coli SHuffle Express cells as the bacterial system, we efficiently produce soluble recombinant EhCP1protein. Enzymatic and inhibition analyses revealed that it exhibits proper catalytic abilities, proceeds effectively over the substrate (following an apparent Michaelis-Menten kinetics), and displays a typical inhibition profile. CONCLUSIONS: We report the first feasibility study of the recombinant production of amebic cysteine proteases using E. coli SHuffle Express as the bacterial host. We present a simple protocol for the recombinant expression and purification of fully soluble and active EhCP1 enzyme. We confirm the suitability of recombinant EhCP1 as a therapeutic target. We propose an approachable bacterial system for the recombinant production of amebic proteins, particularly for those with a need for proper oxidative folding.


Assuntos
Cisteína Proteases/genética , Citoplasma/metabolismo , Escherichia coli/genética , Proteínas Recombinantes/isolamento & purificação , Cisteína Proteases/isolamento & purificação , Cisteína Proteases/metabolismo , Citoplasma/genética , Entamoeba/enzimologia , Entamoeba/genética , Escherichia coli/citologia , Engenharia Genética/métodos , Vetores Genéticos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade
3.
mBio ; 15(6): e0103924, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38757952

RESUMO

Bacteria sense changes in their environment and transduce signals to adjust their cellular functions accordingly. For this purpose, bacteria employ various sensors feeding into multiple signal transduction pathways. Signal recognition by bacterial sensors is studied mainly in a few model organisms, but advances in genome sequencing and analysis offer new ways of exploring the sensory repertoire of many understudied organisms. The human gut is a natural target of this line of study: it is a nutrient-rich and dynamic environment and is home to thousands of bacterial species whose activities impact human health. Many gut commensals are also poorly studied compared to model organisms and are mainly known through their genome sequences. To begin exploring the signals human gut commensals sense and respond to, we have designed a framework that enables the identification of sensory domains, prediction of signals that they recognize, and experimental verification of these predictions. We validate this framework's functionality by systematically identifying amino acid sensors in selected bacterial genomes and metagenomes, characterizing their amino acid binding properties, and demonstrating their signal transduction potential.IMPORTANCESignal transduction is a central process governing how bacteria sense and respond to their environment. The human gut is a complex environment with many living organisms and fluctuating streams of nutrients. One gut inhabitant, Escherichia coli, is a model organism for studying signal transduction. However, E. coli is not representative of most gut microbes, and signaling pathways in the thousands of other organisms comprising the human gut microbiota remain poorly understood. This work provides a foundation for how to explore signals recognized by these organisms.


Assuntos
Bactérias , Microbioma Gastrointestinal , Genoma Bacteriano , Microbioma Gastrointestinal/fisiologia , Humanos , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Transdução de Sinais , Metagenoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA