Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Microb Pathog ; 115: 194-198, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29277475

RESUMO

Streptococcus pneumoniae (pneumococcus) is a Gram-positive bacterium. Humans are the major target for the pneumococcus. The pneumococcus is a common etiological agent of many different diseases such as bacterial meningitis, pneumonia, otitis media (OM), sinusitis, and conjunctivitis. According to the WHO, the pneumococcus is responsible for causing 1 million deaths each year. In 2000, over 14 million children worldwide under the age of 5 years were diagnosed with a pneumococcal disease, with the highest incidence seen in Africa. The human population most susceptible to pneumococcal infections is that of children due to their immature immune system. A sensational increase in antibiotic resistance among S. pneumoniae has been witnessed in different parts of the world since 1980s. The increase of resistance of S. pneumoniae to antibiotics is of major concern throughout the world. Worldwide, there are concerns about rising levels of antibiotic resistance and fears that the efficacy of antimicrobial therapy may be compromised, resulting in treatment failure and reduced utility of older antibiotics, a comparatively novel method has been used to defeat the resistant pathogens since last decade. The computational subtractive genomics approach is one of them, in which the bacterial pathogen complete proteins is gradually rock-bottom to a small number of likely drug targets. In this approach the steps which are used to find human non-homologs targets, proteins that are essential to the disease causing agent and participation of the selected proteins in pathogen metabolic pathways which are necessary for the survival of bacteria. We used computational subtractive genomics on consummate proteins of the of S. pneumonia strain JJA in this study and concluded with 2 proteins that can be used as potent drug targets against which new dynamic molecules can be planned to make better the action to treat the disease which is related with pathogen.


Assuntos
Antibacterianos/uso terapêutico , Genoma Bacteriano/genética , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Infecções Pneumocócicas/tratamento farmacológico , Streptococcus pneumoniae/efeitos dos fármacos , Criança , Pré-Escolar , Farmacorresistência Bacteriana Múltipla , Humanos , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/genética
2.
J Biomol Struct Dyn ; : 1-11, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294714

RESUMO

Inhibitors of α-glucosidase have been used to treat type-2 diabetes (T2DM) by preventing the breakdown of carbohydrates into glucose and prevent enhancing glucose conversion. Structure-based virtual screening (SBVS) was used to generate novel chemical scaffold-ligand α-glucosidase inhibitors. The databases were screened against the receptor α-glucosidase using SBVS and molecular dynamics simulation (MDS) techniques in this study. Based on molecular docking studies, three and two compounds of α-glucosidase inhibitors were chosen from a commercial database (ZINC) and an In-house database for this study respectively. The mode of binding interactions of the selected compounds later predicted their α-glucosidase inhibitory potential. Finally, one out of three lead compound from ZINC and one out of two lead compound from In-house database were shortlisted based on interactions. Furthermore, MDS and post-MDS strategies were used to refine and validate the shortlisted leads along with the reference acarbose/α-glucosidase. The Hits' ability to inhibit α-glucosidase was predicted by SBVS, indicating that these compounds have good inhibitory activities. The lead inhibitor's structure may serve as templates for the design of novel inhibitors, and in vitro testing to confirm their anti-diabetic potential is necessary. These insights can help rationally design new effective anti-diabetic drugs.Communicated by Ramaswamy H. Sarma.

4.
Oncol Res ; 32(5): 817-830, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686050

RESUMO

Cancer frequently develops resistance to the majority of chemotherapy treatments. This study aimed to examine the synergistic cytotoxic and antitumor effects of SGLT2 inhibitors, specifically Canagliflozin (CAN), Dapagliflozin (DAP), Empagliflozin (EMP), and Doxorubicin (DOX), using in vitro experimentation. The precise combination of CAN+DOX has been found to greatly enhance the cytotoxic effects of doxorubicin (DOX) in MCF-7 cells. Interestingly, it was shown that cancer cells exhibit an increased demand for glucose and ATP in order to support their growth. Notably, when these medications were combined with DOX, there was a considerable inhibition of glucose consumption, as well as reductions in intracellular ATP and lactate levels. Moreover, this effect was found to be dependent on the dosages of the drugs. In addition to effectively inhibiting the cell cycle, the combination of CAN+DOX induces substantial modifications in both cell cycle and apoptotic gene expression. This work represents the initial report on the beneficial impact of SGLT2 inhibitor medications, namely CAN, DAP, and EMP, on the responsiveness to the anticancer properties of DOX. The underlying molecular mechanisms potentially involve the suppression of the function of SGLT2.


Assuntos
Apoptose , Neoplasias da Mama , Doxorrubicina , Inibidores do Transportador 2 de Sódio-Glicose , Feminino , Humanos , Apoptose/efeitos dos fármacos , Apoptose/genética , Compostos Benzidrílicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Canagliflozina/farmacologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Glucose/metabolismo , Glucosídeos/farmacologia , Células MCF-7 , Transportador 2 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
5.
Saudi J Biol Sci ; 30(3): 103569, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36816728

RESUMO

Leukemia is a group of diseases characterized by altered growth and differentiation of lymphoid or myeloid progenitors of blood. The existence of specific clusters of cells with stemness-like characteristics like differentiation, self-renewal, detoxification, and resistance to apoptosis in Leukemia makes them difficult to treat. It was recently reported that an oncofetal RNA binding protein, insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), maintains leukemic stem cell properties. BTYNB is an inhibitor of IGF2BP1 that was shown to affect the biological functions of IGF2BP1 however, the effect of BTYNB in Leukemia is not properly established. In this study, we assessed the effect of BTYNB on leukemic cell differentiation and proliferation. We performed cell viability assay to assess the effect of BTYNB in leukemic cells. We then assessed cell morphology of the leukemic cells treated with BTYNB. Further, we conducted an apoptosis assay and cell cycle assay. We found the cell viability of leukemic cells was significantly decreased post treatment with BTYNBs. Further, a noticeable morphological change was observed in BTYNB treated leukemic cells. BTYNB treated leukemic cells showed increased cell death and cell cycle arrest at S-phase. Evidence from the upregulation of BAK and p21 further confirmed apoptosis and cycle arrest. The gene expression of differentiation genes such as CD11B, ZFPM1, and KLF5 were significantly upregulated in BTYNB treated leukemic cells, therefore, confirming cell differentiation. Collectively, our study showed inhibition of IGF2BP1 function using BTYNB promotes differentiation in leukemic cells.

6.
J Biomol Struct Dyn ; : 1-14, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37480259

RESUMO

Morganella morganii is a Gram-negative bacterial pathogen that causes bacteremia, urinary tract infections, intra-abdominal infections, chorioamnionitis, neonatal sepsis, and newborn meningitis. To control this bacterial pathogen a total of 3565 putative proteins targets in Morganella morganii were screened using comparative subtractive analysis of biochemical pathways annotated by the KEGG that did not share any similarities with human proteins. One of the targets, D-alanyl-D-alanine carboxypeptidase DacB [Morganella] was observed to be implicated in the majority of cell wall synthesis pathways, leading to its selection as a novel pharmacological target. The drug that interacted optimally with the identified target was observed to be Cefoperazone (DB01329) with the estimated free energy of binding -8.9 Kcal/mol. During molecular dynamics simulations; it was observed that DB01328-2exb and DB01329-2exb complexes showed similar values as the control FMX-2exb complex near 0.2 nm with better stability. Furthermore, MMPBSA total free energy calculation showed better binding energy than the control complex for DB01329-2exb interaction i.e. -31.50 (±0.93) kcal/mol. Our presented research suggested that D-alanyl-D-alanine carboxypeptidase DacB could be a therapeutic target and cefoperazone could be a promising ligand to inhibit the D-alanyl-D-alanine carboxypeptidase DacB protein of Morganella morganii. To identify prospective therapeutic and vaccine targets in Morganella morganii, this is the first computational and subtractive genomics investigation of various metabolic pathways exploring other therapeutic targets of Morganella morganii. In vitro/in vivo experimental validation of the identified target D-alanyl-D-alanine carboxypeptidase and the design of its inhibitors is suggested to figure out the best dose, the drug's effectiveness, and its toxicity.Communicated by Ramaswamy H. Sarma.

7.
ACS Omega ; 8(14): 13332-13341, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37065064

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder that affects 35 million people worldwide. However, no potential therapeutics currently are available for AD because of the multiple factors involved in it, such as regulatory factors with their candidate genes, factors associated with the expression levels of its corresponding genes, and many others. To date, 29 novel loci from GWAS have been reported for AD by the Psychiatric Genomics Consortium (PGC2). Nevertheless, the main challenge of the post-GWAS era, namely to detect significant variants of the target disease, has not been conducted for AD. N6-methyladenosine (m6a) is reported as the most prevalent mRNA modification that exists in eukaryotes and that influences mRNA nuclear export, translation, splicing, and the stability of mRNA. Furthermore, studies have also reported m6a's association with neurogenesis and brain development. We carried out an integrative genomic analysis of AD variants from GWAS and m6a-SNPs from m6AVAR to identify the effects of m6a-SNPs on AD and identified the significant variants using the statistically significance value (p-value <0.05). The cis-regularity variants with their corresponding genes and their influence on gene expression in the gene expression profiles of AD patients were determined, and showed 1458 potential m6a-SNPs (based on p-value <0.05) associated with AD. eQTL analysis showed that 258 m6a-SNPs had cis-eQTL signals that overlapped with six significant differentially expressed genes based on p-value <0.05 in two datasets of AD gene expression profiles. A follow-up study to elucidate the impact of our identified m6a-SNPs in the experimental study would validate our findings for AD, which would contribute to the etiology of AD.

8.
Biomed Pharmacother ; 164: 114872, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37245338

RESUMO

Therapeutic moieties derived from medicinal plants as well as plants-based ecofriendly processes for producing selenium nanoparticles have shown great promise in the management of type 2 diabetes mellitus (T2DM). The current study was aimed to assess the anti-diabetic potentials of Fagonia cretica mediated biogenic selenium nanoparticles (FcSeNPs) using in-vitro and in-vivo approaches. The bio-synthesized FcSeNPs were characterized using various techniques including UV-VIS spectrophotometry and FTIR analysis. The in-vitro efficacy of FcSeNPs were assessed against α-glucosidase, α-amylase enzymes as well as the anti-radical studies were performed using DPPH and ABTS free radicals scavenging assays. For in-vivo studies, 20 Male Balb/C albino-mice were randomly divided into 4 groups (n = 5) including normal group, disease group (Diabetic group with no treatment), control group and treatment group (Diabetic group treated with FcSeNPs). Further, biochemistry markers including pancreas, liver, kidney and lipid profile were assessed for all treatment groups. The FcSeNPs exhibited a dose-dependent inhibition against α-amylase and α-glucosidase at 62-1000 µg mL-1 concentration with IC50 values of 92 and 100 µg mL-1 respectively. In antioxidant experiments, the FcSeNPs demonstrated significant radicals scavenging effect against DPPH and ABTS radicals. In STZ-induced diabetic mice, a considerable decline in blood glucose level was observed after treatment with FcSeNPs. Anti-hyperglycemic effect of FcSeNPs treated animals were high (105 ± 3.22**) as compared to standard drug (128.6 ± 2.73** mg dL-1). Biochemical investigations revealed that all biochemical parameters for pancreas, liver function, renal function panel and lipid profile were significantly lowered in FcSeNPs treated animals. Our findings indicate a preliminary multi-target efficacy for FcSeNPs against type-2 diabetes and thus warrant further detailed studies.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Selênio , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Selênio/farmacologia , Estresse Oxidativo , Diabetes Mellitus Experimental/tratamento farmacológico , alfa-Glucosidases/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Lipídeos/farmacologia , alfa-Amilases , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química
9.
Front Pharmacol ; 14: 1194809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936909

RESUMO

One of the most widespread metabolic diseases, Type-2 Diabetes Mellitus (T2DM) is defined by high blood sugar levels brought on by decreased insulin secretion, reduced insulin action, or both. Due to its cost-effectiveness and eco-friendliness, plant-mediated green synthesis of nanomaterials has become more and more popular. The aim of the study is to synthesize AgNPs, their characterizations and further in-vitro and in-vivo studies. Several methods were used to morphologically characterise the AgNPs. The AgNPs were crystalline, spherical, and clustered, with sizes ranging from 20 to 50 nm. AgNPs were found to contain various functional groups using Fourier transform infrared spectroscopy. This study focuses on the green-synthesis of AgNPs from Fagonia cretica (F. cretica) leaves extract to evaluate their synthesized AgNPs for in-vitro and in-vivo anti-diabetic function. For the in-vivo tests, 20 male Balb/C albino-mice were split up into four different groups. Anti-diabetic in-vivo studies showed significant weight gain and a decrease in all biochemical markers (pancreas panel, liver function panel, renal function panel, and lipid profile) in Streptozotocin (STZ)-induced diabetic mice. In vitro anti-diabetic investigations were also conducted on AgNPs, comprising α-amylase, α-glucosidase inhibitions, and antioxidant assays. AgNPs showed antioxidant activity in both the DPPH and ABTS assays. The research showed that the isolated nanoparticles have powerful antioxidant and enzyme inhibitory properties, especially against the main enzymes involved in T2DM.

10.
Vaccines (Basel) ; 10(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36423010

RESUMO

Bordetella pertussis is a Gram-negative bacterium known to cause pertussis or whooping cough. The disease affects the respiratory system and is contagious. Pertussis causes high mortality among infants aged less than one-year-old, although it can affect anyone of any age. Globally, 16 million cases of pertussis were reported in 2008, 95% of which were in developing nations, and approximately 195,000 children died from the disease. Under a computational subtractive genomics approach, the total proteome of a pathogen is gently trimmed down to a few potential drug targets. First, from NCBI, we obtained the pathogen proteins followed by CD hit for removal of duplicate proteins. The BLAST step was applied to find non-similar proteins, and then, we applied BLAST to these non-similar bacterial proteins with DEG to find essential bacterial proteins. After this, to find the location, these vital proteins were screened via PSORTb; the majority of proteins were in cytoplasm. The KASS server was used to determine the involvement of these proteins in the metabolic pathways of bacteria, and KEGG was applied to find the unique metabolic pathways of the pathogen. Finally, we applied BLAST to these vital, unique, and non-similar proteins with FDA-approved drug targets, and four proteins of the B. pertussis strain B1917 were identified that might be powerful drug targets. A variety of therapeutic molecules could be designed to target these proteins in order to treat infections caused by bacteria.

11.
Nanomaterials (Basel) ; 12(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432314

RESUMO

6-Mercaptopurine (6-MP) is a well-known immunosuppressive medication with proven anti-proliferative activities. 6-MP possesses incomplete and highly variable oral absorption due to its poor water solubility, which might reduce its anti-cancer properties. To overcome these negative effects, we developed neutral and positively charged drug-loaded liposomal formulations utilizing the thin-film hydration technique. The prepared liposomal formulations were characterized for their size, polydispersity index (PDI), zeta potential, and entrapment efficiency. The average size of the prepared liposomes was between 574.67 ± 37.29 and 660.47 ± 44.32 nm. Positively charged liposomes (F1 and F3) exhibited a lower PDI than the corresponding neutrally charged ones (F2 and F4). Entrapment efficiency was higher in the neutral liposomes when compared to the charged formulation. F1 showed the lowest IC50 against HepG2, HCT116, and MCF-7 cancer cells. HepG2 cells treated with F1 showed the highest level of inhibition of cell proliferation with no evidence of apoptosis. Cell cycle analysis showed an increase in the G1/G0 and S phases, along with a decrease in the G2/M phases in the cell lines treated with drug loaded positively charged liposomes when compared to free positive liposomes, indicating arrest of cells in the S phase due to the stoppage of priming and DNA synthesis outside the mitotic phase. As a result, liposomes could be considered as an effective drug delivery system for treatment of a variety of cancers; they provide a chance that a nanoformulation of 6-MP will boost the cytotoxicity of the drug in a small pharmacological dose which provides a dosage advantage.

12.
Med Chem ; 13(7): 698-704, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28745232

RESUMO

BACKGROUND: α-Glucosidase inhibitors (AGIs) have been reported for their clinical potential against postprandial hyperglycemia, which is responsible for the risks associated with diabetes mellitus 2 and cardiovascular diseases (CVDs). Besides, a number of compounds have been reported as potent AGIs, several side effects are associated with them. METHODS: The aim of present work is to explore new and potent molecules as AGIs. Therefore, a library of dibenzoazepine linked triazoles (1-15) was studied for their in vitro α-glucosidase inhibitory activity. The binding modes of potent compounds in the active site of α-glucosidase enzyme were also explored through molecular docking studies. RESULTS AND CONCLUSION: Among the reported triazoles, compounds 3-9, 11, and 13 (IC50 = 6.0 ± 0.03 to 19.8 ± 0.28 µM) were found to be several fold more active than the standard drug acarbose (IC50 = 840 ± 1.73 µM). Compound 5 (IC50 = 6.0 ± 0.03 µM) was the most potent AGIs in the series, about 77- fold more active than acarbose. Therefore, dibenzoazepine linked-triazoles described here can serve as leads for further studies as new non-sugar AGIs.


Assuntos
Dibenzazepinas/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Triazóis/farmacologia , alfa-Glucosidases/metabolismo , Acarbose/farmacologia , Domínio Catalítico , Dibenzazepinas/síntese química , Inibidores de Glicosídeo Hidrolases/síntese química , Simulação de Acoplamento Molecular , Saccharomyces cerevisiae/enzimologia , Relação Estrutura-Atividade , Triazóis/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA