Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Brain ; 140(1): 98-117, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27807026

RESUMO

SEE GANDHI AND PLUN-FAVREAU DOI101093/AWW320 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: It has been postulated that heterozygous mutations in recessive Parkinson's genes may increase the risk of developing the disease. In particular, the PTEN-induced putative kinase 1 (PINK1) p.G411S (c.1231G>A, rs45478900) mutation has been reported in families with dominant inheritance patterns of Parkinson's disease, suggesting that it might confer a sizeable disease risk when present on only one allele. We examined families with PINK1 p.G411S and conducted a genetic association study with 2560 patients with Parkinson's disease and 2145 control subjects. Heterozygous PINK1 p.G411S mutations markedly increased Parkinson's disease risk (odds ratio = 2.92, P = 0.032); significance remained when supplementing with results from previous studies on 4437 additional subjects (odds ratio = 2.89, P = 0.027). We analysed primary human skin fibroblasts and induced neurons from heterozygous PINK1 p.G411S carriers compared to PINK1 p.Q456X heterozygotes and PINK1 wild-type controls under endogenous conditions. While cells from PINK1 p.Q456X heterozygotes showed reduced levels of PINK1 protein and decreased initial kinase activity upon mitochondrial damage, stress-response was largely unaffected over time, as expected for a recessive loss-of-function mutation. By contrast, PINK1 p.G411S heterozygotes showed no decrease of PINK1 protein levels but a sustained, significant reduction in kinase activity. Molecular modelling and dynamics simulations as well as multiple functional assays revealed that the p.G411S mutation interferes with ubiquitin phosphorylation by wild-type PINK1 in a heterodimeric complex. This impairs the protective functions of the PINK1/parkin-mediated mitochondrial quality control. Based on genetic and clinical evaluation as well as functional and structural characterization, we established p.G411S as a rare genetic risk factor with a relatively large effect size conferred by a partial dominant-negative function phenotype.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença/genética , Modelos Moleculares , Doença de Parkinson/genética , Proteínas Quinases/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Fibroblastos , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Risco , Adulto Jovem
2.
Chembiochem ; 16(6): 990-7, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25755076

RESUMO

Macrolide-pipecolate natural products, such as rapamycin (1) and FK-506 (2), are renowned modulators of FK506-binding proteins (FKBPs). The nocardiopsins, from Nocardiopsis sp. CMB-M0232, are the newest members of this structural class. Here, the biosynthetic pathway for nocardiopsins A-D (4-7) is revealed by cloning, sequencing, and bioinformatic analyses of the nsn gene cluster. In vitro evaluation of recombinant NsnL revealed that this lysine cyclodeaminase catalyzes the conversion of L-lysine into the L-pipecolic acid incorporated into 4 and 5. Bioinformatic analyses supported the conjecture that a linear nocardiopsin precursor is equipped with the hydroxy group required for macrolide closure in a previously unobserved manner by employing a P450 epoxidase (NsnF) and limonene epoxide hydrolase homologue (NsnG). The nsn cluster also encodes candidates for tetrahydrofuran group biosynthesis. The nocardiopsin pathway provides opportunities for engineering of FKBP-binding metabolites and for probing new enzymology in nature's polyketide tailoring arsenal.


Assuntos
Família Multigênica , Sirolimo/metabolismo , Tacrolimo/metabolismo , Actinomycetales/enzimologia , Actinomycetales/genética , Actinomycetales/metabolismo , Sequência de Aminoácidos , Amônia-Liases/química , Amônia-Liases/genética , Amônia-Liases/metabolismo , Biocatálise , Clonagem Molecular , Biologia Computacional , Furanos/metabolismo , Dados de Sequência Molecular , Ácidos Pipecólicos/metabolismo
3.
Org Biomol Chem ; 13(35): 9323, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26289493

RESUMO

Correction for 'Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis' by Norah Alqahtani et al., Org. Biomol. Chem., 2015, 13, 7177-7192.

4.
Org Biomol Chem ; 13(26): 7177-92, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26022437

RESUMO

Marine actinomycete-derived natural products continue to inspire chemical and biological investigations. Nocardioazines A and B (3 and 4), from Nocardiopsis sp. CMB-M0232, are structurally unique alkaloids featuring a 2,5-diketopiperazine (DKP) core functionalized with indole C3-prenyl as well as indole C3- and N-methyl groups. The logic of their assembly remains cryptic. Bioinformatics analyses of the Nocardiopsis sp. CMB-M0232 draft genome afforded the noz cluster, split across two regions of the genome, and encoding putative open reading frames with roles in nocardioazine biosynthesis, including cyclodipeptide synthase (CDPS), prenyltransferase, methyltransferase, and cytochrome P450 homologs. Heterologous expression of a twelve gene contig from the noz cluster in Streptomyces coelicolor resulted in accumulation of cyclo-l-Trp-l-Trp DKP (5). This experimentally connected the noz cluster to indole alkaloid natural product biosynthesis. Results from bioinformatics analyses of the noz pathway along with challenges in actinomycete genetics prompted us to use asymmetric synthesis and mass spectrometry to determine biosynthetic intermediates in the noz pathway. The structures of hypothesized biosynthetic intermediates 5 and 12-17 were firmly established through chemical synthesis. LC-MS and MS-MS comparison of these synthetic compounds with metabolites present in chemical extracts from Nocardiopsis sp. CMB-M0232 revealed which of these hypothesized intermediates were relevant in the nocardioazine biosynthetic pathway. This established the early and mid-stages of the biosynthetic pathway, demonstrating that Nocardiopsis performs indole C3-methylation prior to indole C3-normal prenylation and indole N1'-methylation in nocardioazine B assembly. These results highlight the utility of merging bioinformatics analyses, asymmetric synthetic approaches, and mass spectrometric metabolite profiling in probing natural product biosynthesis.


Assuntos
Dicetopiperazinas/metabolismo , Genômica , Análise de Sequência , Dicetopiperazinas/química , Genoma Bacteriano/genética , Modelos Moleculares , Conformação Molecular , Família Multigênica/genética , Nocardiose/enzimologia , Nocardiose/genética , Nocardiose/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Espectrometria de Massas em Tandem
6.
Oncotarget ; 8(63): 106233-106248, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29290944

RESUMO

Loss-of-function mutations in PINK1 or PARKIN are associated with early-onset Parkinson's disease. Upon mitochondrial stress, PINK1 and Parkin together mediate a response that protects cells from the accumulation of harmful, damaged mitochondria. PINK1, the upstream kinase accumulates on the mitochondrial surface and recruits the E3 ubiquitin ligase Parkin on site to ubiquitylate substrate proteins. The joint activity of both to generate phosphorylated poly-ubiquitin chains on the mitochondrial surface induces the recruitment of autophagy receptors and eventually whole organelles are cleared by autophagy. While this pathway is generally accepted to occur upon chemical uncoupling of mitochondria, the (patho-) physiologic relevance has been questioned. However, few studies have indicated that PINK1 and Parkin are also activated upon accumulation of misfolded proteins in the mitochondrial lumen upon overexpression of ΔOTC (Ornithine transcarbamylase). Here, we used the mitochondrial targeted HSP90 inhibitor Gamitrinib-triphenylphosphonium (G-TPP), an anti-cancer agent, to chemically interfere with mitochondrial protein folding. G-TPP treatment induced PINK1 accumulation, ubiquitin phosphorylation at Ser65, Parkin activation and its recruitment to mitochondria was specific for mitochondrial HSP90 inhibition and largely independent of mitochondrial membrane depolarization. Mitophagy induction was observed by monitoring autophagy receptor recruitment and the mitoKeima reporter. Importantly, mitophagy was not only induced in cancer cells but also in primary human fibroblasts and thereof converted neurons. G-TPP treatment might represent a novel strategy to study PINK1 and Parkin-mediated mitochondrial quality control using a more physiologically relevant stress.

7.
ACS Synth Biol ; 5(7): 547-53, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26641496

RESUMO

Diketopiperazine natural products are structurally diverse and offer many biological activities. Cyclodipeptide synthases (CDPSs) were recently unveiled as a novel enzyme family that employs aminoacyl-tRNAs as substrates for 2,5-diketopiperazine assembly. Here, the Nocardiopsis sp. CMB-M0232 genome is predicted to encode two CDPSs, NozA and NcdA. Metabolite profiles from E. coli expressing these genes and assays with purified recombinant enzymes revealed that NozA and NcdA catalyze cyclo(l-Trp-l-Trp) (1) biosynthesis from tryptophanyl-tRNA and do not accept other aromatic aminoacyl-tRNA substrates. Fidelity is uncommon among characterized CDPSs, making NozA and NcdA important CDPS family additions. Further, 1 was previously supported as a biosynthetic precursor of the nocardioazines; the current study suggests that Nocardiopsis sp. may derive this precursor from both NozA and NcdA. This study offers a rare example of a single bacterium encoding multiple phylogenetically distinct enzymes that yield the same secondary metabolite and provides tools for chemoenzymatic syntheses of indole alkaloid diketopiperazines.


Assuntos
Actinomycetales/enzimologia , Dicetopiperazinas/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Actinomycetales/genética , Catálise , Domínio Catalítico , Dipeptídeos/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Família Multigênica , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Triptofano-tRNA Ligase/genética , Triptofano-tRNA Ligase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA