Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Biol Chem ; 293(30): 11944-11954, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29891549

RESUMO

Glycine N-methyltransferase (GNMT) is the most abundant liver methyltransferase regulating the availability of the biological methyl donor, S-adenosylmethionine (SAM). Moreover, GNMT has been identified to be down-regulated in hepatocellular carcinoma (HCC). Despite its role in regulating SAM levels and association of its down-regulation with liver tumorigenesis, the impact of reduced GNMT on metabolic reprogramming before the manifestation of HCC has not been investigated in detail. Herein, we used 2H/13C metabolic flux analysis in conscious, unrestrained mice to test the hypothesis that the absence of GNMT causes metabolic reprogramming. GNMT-null (KO) mice displayed a reduction in blood glucose that was associated with a decline in both hepatic glycogenolysis and gluconeogenesis. The reduced gluconeogenesis was due to a decrease in liver gluconeogenic precursors, citric acid cycle fluxes, and anaplerosis and cataplerosis. A concurrent elevation in both hepatic SAM and metabolites of SAM utilization pathways was observed in the KO mice. Specifically, the increase in metabolites of SAM utilization pathways indicated that hepatic polyamine synthesis and catabolism, transsulfuration, and de novo lipogenesis pathways were increased in the KO mice. Of note, these pathways utilize substrates that could otherwise be used for gluconeogenesis. Also, this metabolic reprogramming occurs before the well-documented appearance of HCC in GNMT-null mice. Together, these results indicate that GNMT deletion promotes a metabolic shift whereby nutrients are channeled away from glucose formation toward pathways that utilize the elevated SAM.


Assuntos
Carbono/metabolismo , Deleção de Genes , Gluconeogênese , Glicina N-Metiltransferase/genética , Metionina/metabolismo , Animais , Ciclo do Ácido Cítrico , Metabolismo Energético , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Glicina N-Metiltransferase/metabolismo , Fígado/metabolismo , Masculino , Análise do Fluxo Metabólico , Camundongos , Camundongos Knockout , S-Adenosilmetionina/metabolismo
2.
J Biol Chem ; 292(49): 20125-20140, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29038293

RESUMO

Pathologies including diabetes and conditions such as exercise place an unusual demand on liver energy metabolism, and this demand induces a state of energy discharge. Hepatic AMP-activated protein kinase (AMPK) has been proposed to inhibit anabolic processes such as gluconeogenesis in response to cellular energy stress. However, both AMPK activation and glucose release from the liver are increased during exercise. Here, we sought to test the role of hepatic AMPK in the regulation of in vivo glucose-producing and citric acid cycle-related fluxes during an acute bout of muscular work. We used 2H/13C metabolic flux analysis to quantify intermediary metabolism fluxes in both sedentary and treadmill-running mice. Additionally, liver-specific AMPK α1 and α2 subunit KO and WT mice were utilized. Exercise caused an increase in endogenous glucose production, glycogenolysis, and gluconeogenesis from phosphoenolpyruvate. Citric acid cycle fluxes, pyruvate cycling, anaplerosis, and cataplerosis were also elevated during this exercise. Sedentary nutrient fluxes in the postabsorptive state were comparable for the WT and KO mice. However, the increment in the endogenous rate of glucose appearance during exercise was blunted in the KO mice because of a diminished glycogenolytic flux. This lower rate of glycogenolysis was associated with lower hepatic glycogen content before the onset of exercise and prompted a reduction in arterial glucose during exercise. These results indicate that liver AMPKα1α2 is required for maintaining glucose homeostasis during an acute bout of exercise.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glicogenólise , Fígado/enzimologia , Condicionamento Físico Animal , Proteínas Quinases Ativadas por AMP/deficiência , Animais , Metabolismo Energético , Gluconeogênese , Glucose/metabolismo , Homeostase , Marcação por Isótopo , Camundongos , Camundongos Knockout
3.
J Biol Chem ; 290(10): 6546-57, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25593319

RESUMO

Hepatic insulin resistance is associated with increased collagen. Integrin α1ß1 is a collagen-binding receptor expressed on hepatocytes. Here, we show that expression of the α1 subunit is increased in hepatocytes isolated from high fat (HF)-fed mice. To determine whether the integrin α1 subunit protects against impairments in hepatic glucose metabolism, we analyzed glucose tolerance and insulin sensitivity in HF-fed integrin α1-null (itga1(-/-)) and wild-type (itga1(+/+)) littermates. Using the insulin clamp, we found that insulin-stimulated hepatic glucose production was suppressed by ∼50% in HF-fed itga1(+/+) mice. In contrast, it was not suppressed in HF-fed itga1(-/-) mice, indicating severe hepatic insulin resistance. This was associated with decreased hepatic insulin signaling in HF-fed itga1(-/-) mice. Interestingly, hepatic triglyceride and diglyceride contents were normalized to chow-fed levels in HF-fed itga1(-/-) mice. This indicates that hepatic steatosis is dissociated from insulin resistance in HF-fed itga1(-/-) mice. The decrease in hepatic lipid accumulation in HF-fed itga1(-/-) mice was associated with altered free fatty acid metabolism. These studies establish a role for integrin signaling in facilitating hepatic insulin action while promoting lipid accumulation in mice challenged with a HF diet.


Assuntos
Fígado Gorduroso/metabolismo , Glucose/metabolismo , Resistência à Insulina/genética , Integrina alfa1/biossíntese , Animais , Dieta Hiperlipídica , Fígado Gorduroso/patologia , Hepatócitos/metabolismo , Humanos , Insulina/metabolismo , Integrina alfa1/genética , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Triglicerídeos/metabolismo
4.
J Biol Chem ; 289(9): 5950-9, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24403081

RESUMO

Metabolic stress, as well as several antidiabetic agents, increases hepatic nucleotide monophosphate (NMP) levels, activates AMP-activated protein kinase (AMPK), and suppresses glucose production. We tested the necessity of hepatic AMPK for the in vivo effects of an acute elevation in NMP on metabolism. 5-Aminoimidazole-4-carboxamide 1-ß-D-ribofuranoside (AICAR; 8 mg·kg(-1)·min(-1))-euglycemic clamps were performed to elicit an increase in NMP in wild type (α1α2(lox/lox)) and liver-specific AMPK knock-out mice (α1α2(lox/lox) + Albcre) in the presence of fixed glucose. Glucose kinetics were equivalent in 5-h fasted α1α2(lox/lox) and α1α2(lox/lox) + Albcre mice. AMPK was not required for AICAR-mediated suppression of glucose production and increased glucose disappearance. These results demonstrate that AMPK is unnecessary for normal 5-h fasting glucose kinetics and AICAR-mediated inhibition of glucose production. Moreover, plasma fatty acids and triglycerides also decreased independently of hepatic AMPK during AICAR administration. Although the glucoregulatory effects of AICAR were shown to be independent of AMPK, these studies provide in vivo support for the AMPK energy sensor paradigm. AICAR reduced hepatic energy charge by ∼20% in α1α2(lox/lox), which was exacerbated by ∼2-fold in α1α2(lox/lox) + Albcre. This corresponded to a ∼6-fold rise in AMP/ATP in α1α2(lox/lox) + Albcre. Consistent with the effects on adenine nucleotides, maximal mitochondrial respiration was ∼30% lower in α1α2(lox/lox) + Albcre than α1α2(lox/lox) livers. Mitochondrial oxidative phosphorylation efficiency was reduced by 25%. In summary, these results demonstrate that the NMP capacity to inhibit glucose production in vivo is independent of liver AMPK. In contrast, AMPK promotes mitochondrial function and protects against a more precipitous fall in ATP during AICAR administration.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Metabolismo Energético , Glucose/biossíntese , Hipoglicemiantes/farmacologia , Fígado/metabolismo , Ribonucleotídeos/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Aminoimidazol Carboxamida/farmacologia , Animais , Ácidos Graxos/sangue , Glucose/genética , Fígado/citologia , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Triglicerídeos/sangue
5.
Am J Physiol Endocrinol Metab ; 309(2): E191-203, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25991647

RESUMO

Mouse models designed to examine hepatic metabolism are critical to diabetes and obesity research. Thus, a microscale method to quantitatively assess hepatic glucose and intermediary metabolism in conscious, unrestrained mice was developed. [(13)C3]propionate, [(2)H2]water, and [6,6-(2)H2]glucose isotopes were delivered intravenously in short- (9 h) and long-term-fasted (19 h) C57BL/6J mice. GC-MS and mass isotopomer distribution (MID) analysis were performed on three 40-µl arterial plasma glucose samples obtained during the euglycemic isotopic steady state. Model-based regression of hepatic glucose and citric acid cycle (CAC)-related fluxes was performed using a comprehensive isotopomer model to track carbon and hydrogen atom transitions through the network and thereby simulate the MIDs of measured fragment ions. Glucose-6-phosphate production from glycogen diminished, and endogenous glucose production was exclusively gluconeogenic with prolonged fasting. Gluconeogenic flux from phosphoenolpyruvate (PEP) remained stable, whereas that from glycerol modestly increased from short- to long-term fasting. CAC flux [i.e., citrate synthase (VCS)] was reduced with long-term fasting. Interestingly, anaplerosis and cataplerosis increased with fast duration; accordingly, pyruvate carboxylation and the conversion of oxaloacetate to PEP were severalfold higher than VCS in long-term fasted mice. This method utilizes state-of-the-art in vivo methodology and comprehensive isotopomer modeling to quantify hepatic glucose and intermediary fluxes during physiological stress in mice. The small plasma requirements permit serial sampling without stress and the affirmation of steady-state glucose kinetics. Furthermore, the approach can accommodate a broad range of modeling assumptions, isotope tracers, and measurement inputs without the need to introduce ad hoc mathematical approximations.


Assuntos
Glicemia/metabolismo , Deutério/farmacocinética , Cromatografia Gasosa-Espectrometria de Massas/métodos , Marcação por Isótopo/métodos , Fígado/metabolismo , Animais , Transporte Biológico , Glicemia/química , Isótopos de Carbono/análise , Isótopos de Carbono/farmacocinética , Ciclo do Ácido Cítrico/fisiologia , Deutério/análise , Glucose/metabolismo , Glicogênio Hepático/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Am J Physiol Cell Physiol ; 306(1): C19-27, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24196528

RESUMO

A constant provision of ATP is of necessity for cardiac contraction. As the heart progresses toward failure following a myocardial infarction (MI), it undergoes metabolic alterations that have the potential to compromise the ability to meet energetic demands. This study evaluated the efficacy of mesenchymal stem cell (MSC) transplantation into the infarcted heart to minimize impairments in the metabolic processes that contribute to energy provision. Seven and twenty-eight days following the MI and MSC transplantation, MSC administration minimized cardiac systolic dysfunction. Hyperinsulinemic-euglycemic clamps, coupled with 2-[(14)C]deoxyglucose administration, were employed to assess systemic insulin sensitivity and tissue-specific, insulin-mediated glucose uptake 36 days following the MI in the conscious, unrestrained, C57BL/6 mouse. The improved systolic performance in MSC-treated mice was associated with a preservation of in vivo insulin-stimulated cardiac glucose uptake. Conserved glucose uptake in the heart was linked to the ability of the MSC treatment to diminish the decline in insulin signaling as assessed by Akt phosphorylation. The MSC treatment also sustained mitochondrial content, ADP-stimulated oxygen flux, and mitochondrial oxidative phosphorylation efficiency in the heart. Maintenance of mitochondrial function and density was accompanied by preserved peroxisome proliferator-activated receptor-γ coactivator-1α, a master regulator of mitochondrial biogenesis. These studies provide insight into mechanisms of action that lead to an enhanced energetic state in the infarcted heart following MSC transplantation that may assist in energy provision and dampen cardiac dysfunction.


Assuntos
Difosfato de Adenosina/farmacologia , Glucose/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/cirurgia , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia
7.
Diabetologia ; 57(3): 603-13, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24305966

RESUMO

AIMS/HYPOTHESIS: Increased extracellular matrix (ECM) collagen is a characteristic of muscle insulin resistance. Matrix metalloproteinase (MMP) 9 is a primary enzyme that degrades collagen IV (ColIV). As a component of the basement membrane, ColIV plays a key role in ECM remodelling. We tested the hypotheses that genetic deletion of MMP9 in mice increases muscle ColIV, induces insulin resistance in lean mice and worsens diet-induced muscle insulin resistance. METHODS: Wild-type (Mmp9(+/+)) and Mmp9-null (Mmp9(-/-)) mice were chow or high-fat (HF) fed for 16 weeks. Insulin action was measured by the hyperinsulinaemic-euglycaemic clamp in conscious weight-matched surgically catheterised mice. RESULTS: Mmp9(-/-) and HF feeding independently increased muscle ColIV. ColIV in HF-fed Mmp9(-/-) mice was further increased. Mmp9(-/-) did not affect fasting insulin or glucose in chow- or HF-fed mice. The glucose infusion rate (GIR), endogenous glucose appearance (EndoRa) and glucose disappearance (Rd) rates, and a muscle glucose metabolic index (Rg), were the same in chow-fed Mmp9(+/+) and Mmp9(-/-) mice. In contrast, HF-fed Mmp9(-/-) mice had decreased GIR, insulin-stimulated increase in Rd and muscle Rg. Insulin-stimulated suppression of EndoRa, however, remained the same in HF-fed Mmp9(-/-) and Mmp9(+/+) mice. Decreased muscle Rg in HF-fed Mmp9(-/-) was associated with decreased muscle capillaries. CONCLUSIONS/INTERPRETATION: Despite increased muscle ColIV, genetic deletion of MMP9 does not induce insulin resistance in lean mice. In contrast, this deletion results in a more profound state of insulin resistance, specifically in the skeletal muscle of HF-fed mice. These results highlight the importance of ECM remodelling in determining muscle insulin resistance in the presence of HF diet.


Assuntos
Colágeno Tipo V/metabolismo , Matriz Extracelular/metabolismo , Resistência à Insulina , Insulina/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Músculo Esquelético/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal , Dieta Hiperlipídica , Deleção de Genes , Técnica Clamp de Glucose , Imuno-Histoquímica , Secreção de Insulina , Metaloproteinase 9 da Matriz/genética , Camundongos , Músculo Esquelético/imunologia , Fator A de Crescimento do Endotélio Vascular/genética
8.
Cardiovasc Diabetol ; 12: 128, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24007410

RESUMO

BACKGROUND: This study aimed to evaluate the efficacy of mesenchymal stem cell (MSC) transplantation to mitigate abnormalities in cardiac-specific and systemic metabolism mediated by a combination of a myocardial infarction and diet-induced insulin resistance. METHODS: C57BL/6 mice were high-fat fed for eight weeks prior to induction of a myocardial infarction via chronic ligation of the left anterior descending coronary artery. MSCs were administered directly after myocardial infarction induction through a single intramyocardial injection. Echocardiography was performed prior to the myocardial infarction as well as seven and 28 days post-myocardial infarction. Hyperinsulinemic-euglycemic clamps coupled with 2-[14C]deoxyglucose were employed 36 days post-myocardial infarction (13 weeks of high-fat feeding) to assess systemic insulin sensitivity and insulin-mediated, tissue-specific glucose uptake in the conscious, unrestrained mouse. High-resolution respirometry was utilized to evaluate cardiac mitochondrial function in saponin-permeabilized cardiac fibers. RESULTS: MSC administration minimized the decline in ejection fraction following the myocardial infarction. The greater systolic function in MSC-treated mice was associated with increased in vivo cardiac glucose uptake and enhanced mitochondrial oxidative phosphorylation efficiency. MSC therapy promoted reductions in fasting arterial glucose and fatty acid concentrations. Additionally, glucose uptake in peripheral tissues including skeletal muscle and adipose tissue was elevated in MSC-treated mice. Enhanced glucose uptake in these tissues was associated with improved insulin signalling as assessed by Akt phosphorylation and prevention of a decline in GLUT4 often associated with high-fat feeding. CONCLUSIONS: These studies provide insight into the utility of MSC transplantation as a metabolic therapy that extends beyond the heart exerting beneficial systemic effects on insulin action.


Assuntos
Dieta Hiperlipídica , Metabolismo Energético , Resistência à Insulina , Transplante de Células-Tronco Mesenquimais , Infarto do Miocárdio/cirurgia , Miocárdio/metabolismo , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Ácidos Graxos/sangue , Transportador de Glucose Tipo 4/metabolismo , Humanos , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Músculo Esquelético/metabolismo , Infarto do Miocárdio/sangue , Infarto do Miocárdio/fisiopatologia , Fosforilação Oxidativa , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Recuperação de Função Fisiológica , Volume Sistólico , Sístole , Fatores de Tempo
9.
Am J Physiol Endocrinol Metab ; 302(2): E163-72, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21971524

RESUMO

Intense interest has been focused on cell-based therapy for the infarcted heart given that stem cells have exhibited the ability to reduce infarct size and mitigate cardiac dysfunction. Despite this, it is unknown whether mesenchymal stem cell (MSC) therapy can prevent metabolic remodeling following a myocardial infarction (MI). This study examines the ability of MSCs to rescue the infarcted heart from perturbed substrate uptake in vivo. C57BL/6 mice underwent chronic ligation of the left anterior descending coronary artery to induce a MI. Echocardiography was performed on conscious mice at baseline as well as 7 and 23 days post-MI. Twenty-eight days following the ligation procedure, hyperinsulinemic euglycemic clamps assessed in vivo insulin sensitivity. Isotopic tracer administration evaluated whole body, peripheral tissue, and cardiac-specific glucose and fatty acid utilization. To gain insight into the mechanisms by which MSCs modulate metabolism, mitochondrial function was assessed by high-resolution respirometry using permeabilized cardiac fibers. Data show that MSC transplantation preserves insulin-stimulated fatty acid uptake in the peri-infarct region (4.25 ± 0.64 vs. 2.57 ± 0.34 vs. 3.89 ± 0.54 µmol·100 g(-1)·min(-1), SHAM vs. MI + PBS vs. MI + MSC; P < 0.05) and prevents increases in glucose uptake in the remote left ventricle (3.11 ± 0.43 vs. 3.81 ± 0.79 vs. 6.36 ± 1.08 µmol·100 g(-1)·min(-1), SHAM vs. MI + PBS vs. MI + MSC; P < 0.05). This was associated with an enhanced efficiency of mitochondrial oxidative phosphorylation with a respiratory control ratio of 3.36 ± 0.18 in MSC-treated cardiac fibers vs. 2.57 ± 0.14 in the infarct-only fibers (P < 0.05). In conclusion, MSC therapy exhibits the potential to rescue the heart from metabolic aberrations following a MI. Restoration of metabolic flexibility is important given the metabolic demands of the heart and the role of energetics in the progression to heart failure.


Assuntos
Metabolismo Energético/fisiologia , Transplante de Células-Tronco Mesenquimais , Mitocôndrias/metabolismo , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Remodelação Ventricular/fisiologia , Animais , Coração/fisiopatologia , Camundongos , Mitocôndrias/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Fosforilação/fisiologia
10.
Am J Physiol Regul Integr Comp Physiol ; 298(5): R1399-408, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20200137

RESUMO

Endothelial nitric oxide synthase (eNOS) is associated with a number of physiological functions involved in the regulation of metabolism; however, the functional role of eNOS is poorly understood. We tested the hypothesis that eNOS is critical to muscle cell signaling and fuel usage during exercise in vivo, using 16-wk-old catheterized (carotid artery and jugular vein) C57BL/6J mice with wild-type (WT), partial (+/-), or no expression (-/-) of eNOS. Quantitative reductions in eNOS expression ( approximately 40%) elicited many of the phenotypic effects observed in enos(-/-) mice under fasted, sedentary conditions, with expression of oxidative phosphorylation complexes I to V and ATP levels being decreased, and total NOS activity and Ca(2+)/CaM kinase II Thr(286) phosphorylation being increased in skeletal muscle. Despite these alterations, exercise tolerance was markedly impaired in enos(-/-) mice during an acute 30-min bout of exercise. An eNOS-dependent effect was observed with regard to AMP-activated protein kinase signaling and muscle perfusion. Muscle glucose and long-chain fatty acid uptake, and hepatic and skeletal muscle glycogenolysis during the exercise bout was markedly accelerated in enos(-/-) mice compared with enos(+/-) and WT mice. Correspondingly, enos(-/-) mice exhibited hypoglycemia during exercise. Thus, the ablation of eNOS alters a number of physiological processes that result in impaired exercise capacity in vivo. The finding that a partial reduction in eNOS expression is sufficient to induce many of the changes associated with ablation of eNOS has implications for chronic metabolic diseases, such as obesity and insulin resistance, which are associated with reduced eNOS expression.


Assuntos
Metabolismo Energético/fisiologia , Músculo Esquelético/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Esforço Físico/fisiologia , Transdução de Sinais/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Composição Corporal/fisiologia , Peso Corporal/fisiologia , Calorimetria Indireta , Feminino , Gluconeogênese/fisiologia , Glicogênio/metabolismo , Hipoglicemia/metabolismo , Hipoglicemia/fisiopatologia , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mitocôndrias/fisiologia , Músculo Esquelético/irrigação sanguínea , Óxido Nítrico Sintase Tipo III/genética , Fosforilação Oxidativa , Fotoperíodo , Condicionamento Físico Animal/fisiologia , Gravidez , Fluxo Sanguíneo Regional/fisiologia
11.
Mol Metab ; 23: 1-13, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30850319

RESUMO

OBJECTIVE: The loss of liver glycine N-methyltransferase (GNMT) promotes liver steatosis and the transition to hepatocellular carcinoma (HCC). Previous work showed endogenous glucose production is reduced in GNMT-null mice with gluconeogenic precursors being used in alternative biosynthetic pathways that utilize methyl donors and are linked to tumorigenesis. This metabolic programming occurs before the appearance of HCC in GNMT-null mice. The metabolic physiology that sustains liver tumor formation in GNMT-null mice is unknown. The studies presented here tested the hypothesis that nutrient flux pivots from glucose production to pathways that incorporate and metabolize methyl groups in GNMT-null mice with HCC. METHODS: 2H/13C metabolic flux analysis was performed in conscious, unrestrained mice lacking GNMT to quantify glucose formation and associated nutrient fluxes. Molecular analyses of livers from mice lacking GNMT including metabolomic, immunoblotting, and immunochemistry were completed to fully interpret the nutrient fluxes. RESULTS: GNMT knockout (KO) mice showed lower blood glucose that was accompanied by a reduction in liver glycogenolysis and gluconeogenesis. NAD+ was lower and the NAD(P)H-to-NAD(P)+ ratio was higher in livers of KO mice. Indices of NAD+ synthesis and catabolism, pentose phosphate pathway flux, and glutathione synthesis were dysregulated in KO mice. CONCLUSION: Glucose precursor flux away from glucose formation towards pathways that regulate redox status increase in the liver. Moreover, synthesis and scavenging of NAD+ are both impaired resulting in reduced concentrations. This metabolic program blunts an increase in methyl donor availability, however, biosynthetic pathways underlying HCC are activated.


Assuntos
Carcinoma Hepatocelular/metabolismo , Gluconeogênese , Glicina N-Metiltransferase/metabolismo , Homeostase , Neoplasias Hepáticas/metabolismo , Oxirredução , Animais , Metilação de DNA , Fígado Gorduroso/metabolismo , Técnicas de Inativação de Genes , Glucose/metabolismo , Glicina N-Metiltransferase/genética , Fígado/metabolismo , Masculino , Metionina/metabolismo , Camundongos , Camundongos Knockout , NAD/metabolismo
12.
Diabetes ; 68(10): 1892-1901, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31399432

RESUMO

Continuous glucose monitor (CGM) readings are delayed relative to blood glucose, and this delay is usually attributed to the latency of interstitial glucose levels. However, CGM-independent data suggest rapid equilibration of interstitial glucose. This study sought to determine the loci of CGM delays. Electrical current was measured directly from CGM electrodes to define sensor kinetics in the absence of smoothing algorithms. CGMs were implanted in mice, and sensor versus blood glucose responses were measured after an intravenous glucose challenge. Dispersion of a fluorescent glucose analog (2-NBDG) into the CGM microenvironment was observed in vivo using intravital microscopy. Tissue deposited on the sensor and nonimplanted subcutaneous adipose tissue was then collected for histological analysis. The time to half-maximum CGM response in vitro was 35 ± 2 s. In vivo, CGMs took 24 ± 7 min to reach maximum current versus 2 ± 1 min to maximum blood glucose (P = 0.0017). 2-NBDG took 21 ± 7 min to reach maximum fluorescence at the sensor versus 6 ± 6 min in adipose tissue (P = 0.0011). Collagen content was closely correlated with 2-NBDG latency (R = 0.96, P = 0.0004). Diffusion of glucose into the tissue deposited on a CGM is substantially delayed relative to interstitial fluid. A CGM that resists fibrous encapsulation would better approximate real-time deviations in blood glucose.


Assuntos
Automonitorização da Glicemia/instrumentação , Glicemia/análise , Falha de Equipamento , Gordura Subcutânea/patologia , Animais , Fibrose , Camundongos
13.
Diabetes ; 67(5): 831-840, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29511026

RESUMO

Exercise alone is often ineffective for treating obesity despite the associated increase in metabolic requirements. Decreased nonexercise physical activity has been implicated in this resistance to weight loss, but the mechanisms responsible are unclear. We quantified the metabolic cost of nonexercise activity, or "off-wheel" activity (OWA), and voluntary wheel running (VWR) and examined whether changes in OWA during VWR altered energy balance in chow-fed C57BL/6J mice (n = 12). Energy expenditure (EE), energy intake, and behavior (VWR and OWA) were continuously monitored for 4 days with locked running wheels followed by 9 days with unlocked running wheels. Unlocking the running wheels increased EE as a function of VWR distance. The metabolic cost of exercise (kcal/m traveled) decreased with increasing VWR speed. Unlocking the wheel led to a negative energy balance but also decreased OWA, which was predicted to mitigate the expected change in energy balance by ∼45%. A novel behavioral circuit involved repeated bouts of VWR, and roaming was discovered and represented novel predictors of VWR behavior. The integrated analysis described here reveals that the weight loss effects of voluntary exercise can be countered by a reduction in nonexercise activity.


Assuntos
Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Atividade Motora/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Comportamento Animal , Calorimetria Indireta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade , Redução de Peso
14.
PLoS One ; 13(12): e0208634, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30533032

RESUMO

The NAD+-dependent deacetylase SIRT2 is unique amongst sirtuins as it is effective in the cytosol, as well as the mitochondria. Defining the role of cytosolic acetylation state in specific tissues is difficult since even physiological effects at the whole body level are unknown. We hypothesized that genetic SIRT2 knockout (KO) would lead to impaired insulin action, and that this impairment would be worsened in HF fed mice. Insulin sensitivity was tested using the hyperinsulinemic-euglycemic clamp in SIRT2 KO mice and WT littermates. SIRT2 KO mice exhibited reduced skeletal muscle insulin-induced glucose uptake compared to lean WT mice, and this impairment was exacerbated in HF SIRT2 KO mice. Liver insulin sensitivity was unaffected in lean SIRT2 KO mice. However, the insulin resistance that accompanies HF-feeding was worsened in SIRT2 KO mice. It was notable that the effects of SIRT2 KO were largely disassociated from cytosolic acetylation state, but were closely linked to acetylation state in the mitochondria. SIRT2 KO led to an increase in body weight that was due to increased food intake in HF fed mice. In summary, SIRT2 deletion in vivo reduces muscle insulin sensitivity and contributes to liver insulin resistance by a mechanism that is unrelated to cytosolic acetylation state. Mitochondrial acetylation state and changes in feeding behavior that result in increased body weight correspond to the deleterious effects of SIRT2 KO on insulin action.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Sirtuína 2/genética , Acetilação/efeitos dos fármacos , Animais , Metabolismo Energético , Insulina/sangue , Insulina/farmacologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirtuína 2/deficiência
16.
PLoS One ; 12(1): e0170382, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28107516

RESUMO

AMPK is an energy sensor that protects cellular energy state by attenuating anabolic and promoting catabolic processes. AMPK signaling is purported to regulate hepatic gluconeogenesis and substrate oxidation; coordination of these processes is vital during nutrient deprivation or pathogenic during overnutrition. Here we directly test hepatic AMPK function in regulating metabolic fluxes that converge to produce glucose and energy in vivo. Flux analysis was applied in mice with a liver-specific deletion of AMPK (L-KO) or floxed control littermates to assess rates of hepatic glucose producing and citric acid cycle (CAC) fluxes. Fluxes were assessed in short and long term fasted mice; the latter condition is a nutrient stressor that increases liver AMP/ATP. The flux circuit connecting anaplerosis with gluconeogenesis from the CAC was unaffected by hepatic AMPK deletion in short and long term fasting. Nevertheless, depletion of hepatic ATP was exacerbated in L-KO mice, corresponding to a relative elevation in citrate synthase flux and accumulation of branched-chain amino acid-related metabolites. L-KO mice also had a physiological reduction in flux from glycogen to G6P. These results demonstrate AMPK is unnecessary for maintaining gluconeogenic flux from the CAC yet is critical for stabilizing liver energy state during nutrient deprivation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético , Gluconeogênese , Fígado/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Diabetes ; 66(2): 325-334, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27899483

RESUMO

The liver extracellular matrix (ECM) expands with high-fat (HF) feeding. This finding led us to address whether receptors for the ECM, integrins, are key to the development of diet-induced hepatic insulin resistance. Integrin-linked kinase (ILK) is a downstream integrin signaling molecule involved in multiple hepatic processes, including those related to differentiation, wound healing, and metabolism. We tested the hypothesis that deletion of ILK in mice on an HF diet would disrupt the ECM-integrin signaling axis, thereby preventing the transformation into the insulin-resistant liver. To determine the role of ILK in hepatic insulin action in vivo, male C57BL/6J ILKlox/lox mice were crossed with Albcre mice to produce a hepatocyte-specific ILK deletion (ILKlox/loxAlbcre). Results from this study show that hepatic ILK deletion has no effect on insulin action in lean mice but sensitizes the liver to insulin during the challenge of HF feeding. This effect corresponds to changes in the expression and activation of key insulin signaling pathways as well as a greater capacity for hepatic mitochondrial glucose oxidation. This demonstrates that ILK contributes to hepatic insulin resistance and highlights the previously undefined role of integrin signaling in the pathogenesis of diet-induced hepatic insulin resistance.


Assuntos
Dieta Hiperlipídica , Matriz Extracelular/metabolismo , Resistência à Insulina/genética , Fígado/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Deleção de Genes , Técnica Clamp de Glucose , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Triglicerídeos/metabolismo
18.
Diabetes ; 54(2): 373-82, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15677495

RESUMO

AMP-activated protein kinase (AMPK) plays a key role in regulating metabolism, serving as a metabolic master switch. The aim of this study was to assess whether increased concentrations of the AMP analog, 5-aminoimidazole-4-carboxamide-1-beta-D-ribosyl-5-monophosphate, in the liver would create a metabolic response consistent with an increase in whole-body metabolic need. Dogs had sampling (artery, portal vein, hepatic vein) and infusion (vena cava, portal vein) catheters and flow probes (hepatic artery, portal vein) implanted >16 days before a study. Protocols consisted of equilibration (-130 to -30 min), basal (-30 to 0 min), and hyperinsulinemic-euglycemic or -hypoglycemic clamp periods (0-150 min). At t = 0 min, somatostatin was infused and glucagon was replaced in the portal vein at basal rates. An intraportal hyperinsulinemic (2 mU . kg(-1) . min(-1)) infusion was also initiated at this time. Glucose was clamped at hypoglycemic or euglycemic levels in the presence (H-AIC, n = 6; E-AIC, n = 6) or absence (H-SAL, n = 6; E-SAL, n = 6) of a portal venous 5-aminoimidazole-4-carboxamide-ribofuranoside (AICAR) infusion (1 mg . kg(-1) . min(-1)) initiated at t = 60 min. In the presence of intraportal saline, glucose was infused into the vena cava to match glucose levels seen with intraportal AICAR. Glucagon remained fixed at basal levels, whereas insulin rose similarly in all groups. Glucose fell to 50 +/- 2 mg/dl by t = 60 min in hypoglycemic groups and remained at 105 +/- 3 mg/dl in euglycemic groups. Endogenous glucose production (R(a)) was similarly suppressed among groups in the presence of euglycemia or hypoglycemia before t = 60 min and remained suppressed in the H-SAL and E-SAL groups. However, intraportal AICAR infusion stimulated R(a) to increase by 2.5 +/- 1.0 and 3.4 +/- 0.4 mg . kg(-1) . min(-1) in the E-AIC and H-AIC groups, respectively. Arteriovenous measurement of net hepatic glucose output showed similar results. AICAR stimulated hepatic glycogen to decrease by 5 +/- 3 and 19 +/- 5 mg/g tissue (P < 0.05) in the presence of euglycemia and hypoglycemia, respectively. AICAR significantly increased net hepatic lactate output in the presence of hypoglycemia. Thus, intraportal AICAR infusion caused marked stimulation of both hepatic glucose output and net hepatic glycogenolysis, even in the presence of high levels of physiological insulin. This stimulation of glucose output by AICAR was equally marked in the presence of both euglycemia and hypoglycemia. However, hypoglycemia amplified the net hepatic glycogenolytic response to AICAR by approximately fourfold.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Glicemia/metabolismo , Hiperinsulinismo/prevenção & controle , Ribonucleotídeos/farmacologia , Aminoimidazol Carboxamida/administração & dosagem , Animais , Glicemia/efeitos dos fármacos , Cães , Feminino , Técnica Clamp de Glucose , Veias Hepáticas , Infusões Intravenosas , Masculino , Veia Porta , Ribonucleotídeos/administração & dosagem
19.
Diabetes ; 54(2): 355-60, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15677492

RESUMO

The infusion of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) causes a rise in tissue concentrations of the AMP analog 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranotide (ZMP), which mimics an elevation of cellular AMP levels. The purpose of this work was to determine the effect of raising hepatic ZMP levels on hepatic insulin action in vivo. Dogs had sampling and infusion catheters as well as flow probes implanted 16 days before an experiment. After an 18-h fast, blood glucose was 82 +/- 1 mg/dl and basal net hepatic glucose output 1.5 +/- 0.2 mg . kg(-1) . min(-1). Dogs received portal venous glucose (3.2 mg . kg(-1) . min(-1)), peripheral venous somatostatin, and basal portal venous glucagon infusions from -90 to 60 min. Physiological hyperinsulinemia was established with a portal insulin infusion (1.2 mU . kg(-1) . min(-1)). Peripheral venous glucose infusion was used to clamp arterial blood glucose at 150 mg/dl. Starting at t = 0 min, dogs received portal venous AICAR infusions of 0, 1, or 2 mg . kg(-1) . min(-1). Net hepatic glucose uptake was 2.4 +/- 0.5 mg . kg(-1) . min(-1) (mean of all groups) before t = 0 min. In the absence of AICAR, net hepatic glucose uptake was 1.9 +/- 0.4 mg . kg(-1) . min(-1) at t = 60 min. The lower-dose AICAR infusion caused a complete suppression of net hepatic glucose uptake (-1.0 +/- 1.7 mg . kg(-1) . min(-1) at t = 60 min). The higher AICAR dose resulted in a profound shift in hepatic glucose balance from net uptake to a marked net output (-6.1 +/- 1.9 mg . kg(-1) . min(-1) at t = 60 min), even in the face of hyperglycemia and hyperinsulinemia. These data show that elevations in hepatic ZMP concentrations, induced by portal venous AICAR infusion, cause acute hepatic insulin resistance. These findings have important implications for the targeting of AMP kinase for the treatment of insulin resistance, using AMP analogs.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Resistência à Insulina/fisiologia , Fígado/fisiologia , Ribonucleotídeos/farmacologia , Aminoimidazol Carboxamida/administração & dosagem , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , AMP Cíclico/metabolismo , Cães , Feminino , Técnica Clamp de Glucose , Glicólise/efeitos dos fármacos , Hiperinsulinismo/sangue , Infusões Intravenosas , Fígado/efeitos dos fármacos , Masculino , Técnicas de Patch-Clamp , Veia Porta/fisiologia , Ribonucleotídeos/administração & dosagem
20.
Diabetes ; 65(6): 1590-600, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27207548

RESUMO

Diet-induced muscle insulin resistance is associated with expansion of extracellular matrix (ECM) components, such as collagens, and the expression of collagen-binding integrin, α2ß1. Integrins transduce signals from ECM via their cytoplasmic domains, which bind to intracellular integrin-binding proteins. The integrin-linked kinase (ILK)-PINCH-parvin (IPP) complex interacts with the cytoplasmic domain of ß-integrin subunits and is critical for integrin signaling. In this study we defined the role of ILK, a key component of the IPP complex, in diet-induced muscle insulin resistance. Wild-type (ILK(lox/lox)) and muscle-specific ILK-deficient (ILK(lox/lox)HSAcre) mice were fed chow or a high-fat (HF) diet for 16 weeks. Body weight was not different between ILK(lox/lox) and ILK(lox/lox)HSAcre mice. However, HF-fed ILK(lox/lox)HSAcre mice had improved muscle insulin sensitivity relative to HF-fed ILK(lox/lox) mice, as shown by increased rates of glucose infusion, glucose disappearance, and muscle glucose uptake during a hyperinsulinemic-euglycemic clamp. Improved muscle insulin action in the HF-fed ILK(lox/lox)HSAcre mice was associated with increased insulin-stimulated phosphorylation of Akt and increased muscle capillarization. These results suggest that ILK expression in muscle is a critical component of diet-induced insulin resistance, which possibly acts by impairing insulin signaling and insulin perfusion through capillaries.


Assuntos
Resistência à Insulina , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Dieta Hiperlipídica , Matriz Extracelular/metabolismo , Glucose/metabolismo , Técnica Clamp de Glucose , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA