Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2316006121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748577

RESUMO

Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteristics while also retaining their vascular identity remains challenging. Here, we show that the simultaneous activation of cyclic AMP and Wnt/ß-catenin signaling and inhibition of the TGF-ß pathway in endothelial cells robustly induce BBB properties in vitro. To target this interaction, we present a small-molecule cocktail named cARLA, which synergistically enhances barrier tightness in a range of BBB models across species. Mechanistically, we reveal that the three pathways converge on Wnt/ß-catenin signaling to mediate the effect of cARLA via the tight junction protein claudin-5. We demonstrate that cARLA shifts the gene expressional profile of human stem cell-derived endothelial cells toward the in vivo brain endothelial signature, with a higher glycocalyx density and efflux pump activity, lower rates of endocytosis, and a characteristic endothelial response to proinflammatory cytokines. Finally, we illustrate how cARLA can improve the predictive value of human BBB models regarding the brain penetration of drugs and targeted nanoparticles. Due to its synergistic effect, high reproducibility, and ease of use, cARLA has the potential to advance drug development for the human brain by improving BBB models across laboratories.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Barreira Hematoencefálica/metabolismo , Humanos , Células Endoteliais/metabolismo , Animais , Via de Sinalização Wnt , Claudina-5/metabolismo , Claudina-5/genética , AMP Cíclico/metabolismo , Camundongos , Células-Tronco/metabolismo , Células-Tronco/citologia , Junções Íntimas/metabolismo , beta Catenina/metabolismo
2.
Mol Pharm ; 20(1): 680-689, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36515396

RESUMO

Developing gene vectors with high transfection efficiency and low cytotoxicity to humans is crucial to improve gene therapy outcomes. This study set out to investigate the use of cationic polypeptide bilayer assemblies formed by coil-sheet poly(l-lysine)-block-poly(l-benzyl-cysteine) (PLL-b-PBLC) as gene vectors that present improved transfection efficiency, endosomal escape, and biocompatibility compared to PLL. The formation of the polyplexes was triggered by hydrogen bonding, hydrophobic interactions, and electrostatic association between the cationic PLL segments and the negatively charged plasmid encoding p53, resulting in self-assembled polypeptide chains. Transfection efficiency of these polyplexes increased with increments of PLL-to-PBLC block ratios, with PLL15-b-PBLC5 bilayers exhibiting the best in vitro transfection efficiency among all, suggesting that PLL-b-PBLC bilayer assemblies are efficient in the protection and stabilization of genes. The polypeptide bilayer gene vector reversed the cisplatin sensitivity of p53-null cancer cells by increasing apoptotic signaling. Consistent with in vitro results, mouse xenograft studies revealed that PLL15-b-PBLC5/plasmid encoding p53 therapy significantly suppressed tumor growth and enhanced low-dose cisplatin treatment, while extending survival of tumor-bearing mice and avoiding significant body weight loss. This study presents a feasible gene therapy that, combined with low-dose chemotherapeutic drugs, may treat genetically resistant cancers while reducing side effects in clinical patients.


Assuntos
Cisplatino , Neoplasias , Humanos , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Peptídeos/química , Transfecção , Terapia Genética , Plasmídeos/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Polilisina/química
3.
Biomacromolecules ; 21(9): 3836-3846, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32790281

RESUMO

Cancer metastasis is a central oncology concern that worsens patient conditions and increases mortality in a short period of time. During metastatic events, mitochondria undergo specific physiological alterations that have emerged as notable therapeutic targets to counter cancer progression. In this study, we use drug-free, cationic peptide fibrillar assemblies (PFAs) formed by poly(L-Lysine)-block-poly(L-Threonine) (Lys-b-Thr) to target mitochondria. These PFAs interact with cellular and mitochondrial membranes via electrostatic interactions, resulting in membranolysis. Charge repulsion and hydrogen-bonding interactions exerted by Lys and Thr segments dictate the packing of the peptides and enable the PFAs to display enhanced membranolytic activity toward cancer cells. Cytochrome c (cyt c), endonuclease G, and apoptosis-inducing factor were released from mitochondria after treatment of lung cancer cells, subsequently inducing caspase-dependent and caspase-independent apoptotic pathways. A metastatic xenograft mouse model was used to show how the PFAs significantly suppressed lung metastasis and inhibited tumor growth, while avoiding significant body weight loss and mortality. Antimetastatic activities of PFAs are also demonstrated by in vitro inhibition of lung cancer cell migration and clonogenesis. Our results imply that the cationic PFAs achieved the intended and targeted mitochondrial damage, providing an efficient antimetastatic therapy.


Assuntos
Neoplasias Pulmonares , Animais , Apoptose , Caspases , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Mitocôndrias
4.
Small ; 14(12): e1703571, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29436116

RESUMO

This study uses graphene oxide quantum dots (GOQDs) to enhance the Li+ -ion mobility of a gel polymer electrolyte (GPE) for lithium-ion batteries (LIBs). The GPE comprises a framework of poly(acrylonitrile-co-vinylacetate) blended with poly(methyl methacrylate) and a salt LiPF6 solvated in carbonate solvents. The GOQDs, which function as acceptors, are small (3-11 nm) and well dispersed in the polymer framework. The GOQDs suppress the formation of ion-solvent clusters and immobilize PF6- anions, affording the GPE a high ionic conductivity and a high Li+ -ion transference number (0.77). When assembled into Li|electrolyte|LiFePO4 batteries, the GPEs containing GOQDs preserve the battery capacity at high rates (up to 20 C) and exhibit 100% capacity retention after 500 charge-discharge cycles. Smaller GOQDs are more effective in GPE performance enhancement because of the higher dispersion of QDs. The minimization of both the ion-solvent clusters and degree of Li+ -ion solvation in the GPEs with GOQDs results in even plating and stripping of the Li-metal anode; therefore, Li dendrite formation is suppressed during battery operation. This study demonstrates a strategy of using small GOQDs with tunable properties to effectively modulate ion-solvent coordination in GPEs and thus improve the performance and lifespan of LIBs.

5.
Soft Matter ; 10(47): 9568-76, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25357089

RESUMO

We report the versatility of polyion complex (PIC) micelles for the preparation of shell and core cross-linked (SCL and CCL) micelles with their surface properties determined by the constituent polymer composition and cross-linking agent. The negatively and positively charged PIC micelles with their molecular structure and properties depending on the mixing weight percentage and polymer molecular weight were first prepared by mixing the negatively and positively charged polyions, poly(acrylic acid) (PAA) and poly(L-lysine) (PLL). The feasibility of preparing SCL micelles was demonstrated by cross-linking the shell of the negatively and positively charged micelles using cystamine and genipin, respectively. The core of the micelles can be cross-linked by silica deposition to stabilize the assemblies. The shell and/or core cross-linked micelles exhibited excellent colloid stability upon changing solution pH. The drug release from the drug-loaded SCL micelles revealed that the controllable permeability of the SCL micelles can be achieved by tuning the cross-linking degree and the SCL micelles exhibited noticeable pH-responsive behavior with accelerated release under acidic conditions. With the versatility of cross-linking strategies, it is possible to prepare a variety of SCL and CCL micelles from PIC micelles.


Assuntos
Resinas Acrílicas/química , Antibióticos Antineoplásicos/química , Doxorrubicina/química , Portadores de Fármacos/química , Modelos Químicos , Polilisina/análogos & derivados , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/análise , Reagentes de Ligações Cruzadas/química , Cistamina/química , Doxorrubicina/administração & dosagem , Doxorrubicina/análise , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/análise , Composição de Medicamentos , Estabilidade de Medicamentos , Estudos de Viabilidade , Concentração de Íons de Hidrogênio , Iridoides/química , Cinética , Teste de Materiais , Micelas , Peso Molecular , Permeabilidade , Polilisina/química , Solubilidade , Propriedades de Superfície
6.
Biochim Biophys Acta ; 1820(11): 1774-86, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22884915

RESUMO

BACKGROUND: More than twenty-seven human proteins can fold abnormally to form amyloid deposits associated with a number of degenerative diseases. The research reported here is aimed at exploring the connection between curcumin's thermostability and its inhibitory activity toward the amyloid fibrillation of hen egg-white lysozyme (HEWL). METHODS: ThT fluorescence spectroscopy, equilibrium thermal denaturation analysis, and transmission electron microscopy were employed for structural characterization. MTT reduction and flow cytometric analyses were used to examine cell viability. RESULTS AND CONCLUSION: The addition of thermally pre-treated curcumin was found to attenuate the formation of HEWL fibrils and the observed fibrillation inhibition was dependent upon the pre-incubation temperature of curcumin. Our results also demonstrated that the cytotoxic effects of fibrillar HEWL species on PC 12 and SH-SY5Y cells were decreased and negatively correlated with curcumin's thermostability. Next, an enhanced stability of HEWL was perceived upon the addition of curcumin pre-incubated at lower temperature. Furthermore, we found that the alteration of curcumin's thermostability was associated with its inhibitory potency against HEWL fibrillation. GENERAL SIGNIFICANCE: We believe that the results from this research may contribute to the development of effective therapeutics for amyloidoses.


Assuntos
Amiloide/antagonistas & inibidores , Curcumina/farmacologia , Muramidase/farmacologia , Amiloidose/tratamento farmacológico , Animais , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , Citometria de Fluxo , Muramidase/química , Células PC12 , Dobramento de Proteína , Ratos , Espectrofotometria Ultravioleta , Temperatura , Termodinâmica
7.
Polymers (Basel) ; 15(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37836027

RESUMO

We report the feasibility of using gelatin hydrogel networks as the host for the in situ, environmentally friendly formation of well-dispersed zinc oxide nanoparticles (ZnONPs) and the evaluation of the antibacterial activity of the as-prepared composite hydrogels. The resulting composite hydrogels displayed remarkable biocompatibility and antibacterial activity as compared to those in previous studies, primarily attributed to the uniform distribution of the ZnONPs with sizes smaller than 15 nm within the hydrogel network. In addition, the composite hydrogels exhibited better thermal stability and mechanical properties as well as lower swelling ratios compared to the unloaded counterpart, which could be attributed to the non-covalent interactions between the in situ formed ZnONPs and polypeptide chains. The presence of ZnONPs contributed to the disruption of bacterial cell membranes, the alteration of DNA molecules, and the subsequent release of reactive oxygen species within the bacterial cells. This chain of events culminated in bacterial cell lysis and DNA fragmentation. This research underscores the potential benefits of incorporating antibacterial agents into hydrogels and highlights the significance of preparing antimicrobial agents within gel networks.

8.
Cells ; 12(3)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36766845

RESUMO

Nanoparticles (NPs) are the focus of research efforts that aim to develop successful drug delivery systems for the brain. Polypeptide nanocarriers are versatile platforms and combine high functionality with good biocompatibility and biodegradability. The key to the efficient brain delivery of NPs is the specific targeting of cerebral endothelial cells that form the blood-brain barrier (BBB). We have previously discovered that the combination of two different ligands of BBB nutrient transporters, alanine and glutathione, increases the permeability of vesicular NPs across the BBB. Our aim here was to investigate whether the combination of these molecules can also promote the efficient transfer of 3-armed poly(l-glutamic acid) NPs across a human endothelial cell and brain pericyte BBB co-culture model. Alanine and glutathione dual-targeted polypeptide NPs showed good cytocompatibility and elevated cellular uptake in a time-dependent and active manner. Targeted NPs had a higher permeability across the BBB model and could subsequently enter midbrain-like organoids derived from healthy and Parkinson's disease patient-specific stem cells. These results indicate that poly(l-glutamic acid) NPs can be used as nanocarriers for nervous system application and that the right combination of molecules that target cerebral endothelial cells, in this case alanine and glutathione, can facilitate drug delivery to the brain.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Humanos , Alanina , Ácido Glutâmico , Encéfalo , Peptídeos/farmacologia , Peptídeos/química , Glutationa , Organoides
9.
Biosensors (Basel) ; 13(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36979569

RESUMO

The application of lab-on-a-chip technologies in in vitro cell culturing swiftly resulted in improved models of human organs compared to static culture insert-based ones. These chip devices provide controlled cell culture environments to mimic physiological functions and properties. Models of the blood-brain barrier (BBB) especially profited from this advanced technological approach. The BBB represents the tightest endothelial barrier within the vasculature with high electric resistance and low passive permeability, providing a controlled interface between the circulation and the brain. The multi-cell type dynamic BBB-on-chip models are in demand in several fields as alternatives to expensive animal studies or static culture inserts methods. Their combination with integrated biosensors provides real-time and noninvasive monitoring of the integrity of the BBB and of the presence and concentration of agents contributing to the physiological and metabolic functions and pathologies. In this review, we describe built-in sensors to characterize BBB models via quasi-direct current and electrical impedance measurements, as well as the different types of biosensors for the detection of metabolites, drugs, or toxic agents. We also give an outlook on the future of the field, with potential combinations of existing methods and possible improvements of current techniques.


Assuntos
Barreira Hematoencefálica , Encéfalo , Animais , Humanos , Barreira Hematoencefálica/metabolismo , Transporte Biológico , Técnicas de Cultura de Células , Dispositivos Lab-On-A-Chip
10.
J Nanosci Nanotechnol ; 12(3): 2802-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22755126

RESUMO

A simple and facile synthesis of gold nanowire networks and sol particles at room temperature is presented using L-tyrosine (Tyr) as both the reducing and capping agent. The synthesis conditions with varying the gold precursor concentration ([HAuCl4], 0.1-2.5 mM) and concentration ratio of tyrosine to gold precursor R ([Tyr]/[HAuCl4], 0.05-10) were identified for the preparation of network-like nanowires and sol nanoparticles. Gold sol particles with sizes between 10 and 18 nm were mostly obtained at R > or = 0.2. Network-like gold nanowires with average diameters as thin as 8 nm can be reproducibly synthesized at R < or = 0.1. The experimental data revealed that the phenolic and carboxyl group of Tyr were oxidized to form quinone and alcohol, respectively. The growth process was examined to elucidate the influence of the synthesis conditions on different morphologies, showing marked difference in isotropic and anisotropic growth of gold nanostructures at different synthesis conditions. The study showed that tyrosine possesses excellent reducing capability with short nucleation period and long growth period as compared with other amino acids.

11.
Polymers (Basel) ; 14(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35683879

RESUMO

Poly(glycerol sebacate) (PGS), a soft, tough elastomer with excellent biocompatibility, has been exploited successfully in many tissue engineering applications. Although tunable to some extent, the rapid in vivo degradation kinetics of PGS is not compatible with the healing rate of some tissues. The incorporation of L-glutamic acid into a PGS network with an aim to retard the degradation rate of PGS through the formation of peptide bonds was conducted in this study. A series of poly(glycerol sebacate glutamate) (PGSE) containing various molar ratios of sebacic acid/L-glutamic acid were synthesized. Two kinds of amino-protected glutamic acids, Boc-L-glutamic acid and Z-L-glutamic acid were used to prepare controls that consist of no peptide bonds, denoted as PGSE-B and PGSE-Z, respectively. The prepolymers were characterized using 1H-NMR spectroscopy. Cured elastomers were characterized using FT-IR, DSC, TGA, mechanical testing, and contact angle measurement. In vitro enzymatic degradation of PGSE over a period of 28 days was investigated. FT-IR spectroscopy confirmed the formation of peptide bonds. The glass transition temperature for the elastomer was found to increase as the ratio of sebacic acid/glutamic acid was increased to four. The decomposition temperature of the elastomer decreased as the amount of glutamic acid was increased. PGSE exhibited less stiffness and larger elongation at break as the ratio of sebacic acid/glutamic acid was decreased. Notably, PGSE-Z was stiffer and had smaller elongation at break than PGSE and PGSE-B at the same molar ratio of monomers. The results of in vitro enzymatic degradation demonstrated that PGSE has a lower degradation rate than does PGS, whereas PGSE-B and PGSE-Z degrade at a greater rate than does PGS. SEM images suggest that the degradation of these crosslinked elastomers is due to surface erosion. The cytocompatibility of PGSE was considered acceptable although slightly lower than that of PGS. The altered mechanical properties and retarded degradation kinetics for PGSE reflect the influence of peptide bonds formed by the introduction of L-glutamic acid. PGSE displaying a lower degradation rate compared to that for PGS can be used as a scaffold material for the repair or regeneration of tissues that are featured by a low healing rate.

12.
Gels ; 8(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35735710

RESUMO

To study the self-assembly and hydrogel formation of the star-shaped graft copolypeptides with asymmetric topology, star-shaped poly(L-lysine) with various arm numbers were synthesized by using asymmetric polyglycerol dendrimers (PGDs) as the initiators and 1,1,3,3-tetramethylguanidine (TMG) as an activator for OH groups, followed by deprotection and grafting with indole or phenyl group on the side chain. The packing of the grafting moiety via non-covalent interactions not only facilitated the polypeptide segments to adopt more ordered conformations but also triggered the spontaneous hydrogelation. The hydrogelation ability was found to be correlated with polypeptide composition and topology. The star-shaped polypeptides with asymmetric topology exhibited poorer hydrogelation ability than those with symmetric topology due to the less efficient packing of the grafted moiety. The star-shaped polypeptides grafted with indole group on the side chain exhibited better hydrogelation ability than those grafted with phenyl group with the same arm number. This report demonstrated that the grafted moiety and polypeptide topology possessed the potential ability to modulate the polypeptide hydrogelation and hydrogel characteristics.

13.
Cells ; 11(16)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36010659

RESUMO

Several degenerative disorders of the central nervous system, including Parkinson's disease (PD), are related to the pathological aggregation of proteins. Antibodies against toxic disease proteins, such as α-synuclein (SNCA), are therefore being developed as possible therapeutics. In this work, one peptide (YVGSKTKEGVVHGVA) from SNCA was used as the epitope to construct magnetic molecularly imprinted composite nanoparticles (MMIPs). These composite nanoparticles were characterized by dynamic light scattering (DLS), high-performance liquid chromatography (HPLC), isothermal titration calorimetry (ITC), Brunauer-Emmett-Teller (BET) analysis, and superconducting quantum interference device (SQUID) analysis. Finally, the viability of brain endothelial cells that were treated with MMIPs was measured, and the extraction of SNCA from CRISPR/dCas9a-activated HEK293T cells from the in vitro model system was demonstrated for the therapeutic application of MMIPs.


Assuntos
Impressão Molecular , Nanopartículas , Células Endoteliais/metabolismo , Epitopos , Células HEK293 , Humanos , Impressão Molecular/métodos , alfa-Sinucleína/metabolismo
14.
Langmuir ; 27(6): 2834-43, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21319781

RESUMO

A simple and versatile approach is proposed to use the LbL-assembled polypeptide macromolecular assemblies as mediating agents and templates for directed growth of gold nanoparticles and biomimetic silica mineralization, allowing the synthesis of polypeptide/silica and polypeptide/gold nanoparticle/silica composite materials, as well as mesoporous silica (meso-SiO2) and gold nanoparticle/mesoporous silica (Au NP/meso-SiO2). The formation of tubular nanostructures was demonstrated by silicification and growth of gold nanoparticles within macromolecular assemblies formed by poly(L-lysine) (PLL) and poly(L-glutamic acid) (PLGA) using polycarbonate membranes as templates. The experimental data revealed that the silicified macromolecular assemblies adopted mainly sheet/turn conformation. The as-prepared mesoporous silica materials possessed well-defined tubular structures with pore size and porosity depending on the size of sheet/turn aggregates, which is a function of the molecular weight of polypeptides. The directed growth of Au NP and subsequent silica mineralization in the macromolecular assembly resulted in Au NP/meso-SiO2 tubes with uniform nanoparticle size and the as-prepared materials exhibited promising catalytic activity toward the reduction of p-nitrophenol. This approach provides a facile and general method to synthesize organic-inorganic composite materials, oxide and metal-oxide nanomaterials with different compositions and structures.


Assuntos
Ouro/química , Nanoestruturas/química , Peptídeos/síntese química , Dióxido de Silício/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Tamanho da Partícula , Peptídeos/química , Porosidade , Propriedades de Superfície
15.
J Nanosci Nanotechnol ; 11(6): 5247-57, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21770171

RESUMO

Layer-by-layer (LbL) deposition of poly(L-lysine) (PLL) dissolved in different solutions and a water-soluble titania precursor, titanium(IV) bis(ammonium lactate) dihydroxide (TiBALDH) to form multilayer films on the wall of polycarbonate (PC) membrane pores was performed to prepare nanostructured titania-PLL composite and pure anatase and rutile titania tubes. A battery of analytical techniques was utilized to characterize and compare the structures, crystal phases, and photocatalytic properties of the titania tubes. In different solutions conditions, PLL which adopts secondary conformations (i.e., alpha-helix and random coil) and has varying interactions with different counterions (i.e., chloride and phosphate ions) can influence PLL/TiBALDH deposition and, in turn, results in the titania materials with different nanostructures and phtocatalytic properties. The influence of LbL assembly condition, deposition cycle, and polypeptide molecular weight on photocatalytic properties of resultant anatase titania tubes were further explored and these materials are promising photocatalyst with the advantage of easily handling and recycling. This reported approach may provide a facile and general way to prepare organic-inorganic composite and other inorganic materials with different compositions, structures, and properties for various applications.

16.
Pharmaceutics ; 13(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34834328

RESUMO

Bacteria-targeting nanomaterials have been widely used in the diagnosis and treatment of bacterial infectious diseases. These nanomaterials show great potential as antimicrobial agents due to their broad-spectrum antibacterial capacity and relatively low toxicity. Recently, nanomaterials have improved the accurate detection of pathogens, provided therapeutic strategies against nosocomial infections and facilitated the delivery of antigenic protein vaccines that induce humoral and cellular immunity. Biomaterial implants, which have traditionally been hindered by bacterial colonization, benefit from their ability to prevent bacteria from forming biofilms and spreading into adjacent tissues. Wound repair is improving in terms of both the function and prevention of bacterial infection, as we tailor nanomaterials to their needs, select encapsulation methods and materials, incorporate activation systems and add immune-activating adjuvants. Recent years have produced numerous advances in their antibacterial applications, but even further expansion in the diagnosis and treatment of infectious diseases is expected in the future.

17.
Mater Sci Eng C Mater Biol Appl ; 131: 112484, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34857270

RESUMO

Neutrophil extracellular traps (NETs) are chromatin-based structures that are released from neutrophils during infections and prevent microbes from spreading in the body through efficient degradation of their composition. Based on this chromatin-driven strategy of capturing and killing bacteria, we designed NET-like structures using DNA and ZnO nanoparticles (NPs). DNA was first purified from kiwifruit and treated with HCl to increase hydroxyl groups in the opened-deoxylribose form. The carboxyl groups of citric acid were then thermally crosslinked with said hydroxyl and primary amine groups in DNA, forming DNA-HCl nanogels (NGs). ZnO NPs were then used as positively charged granule enzymes, adsorbed onto the DNA-HCl NG, obtaining ZnO/DNA-HCl NGs (with NET biomimicry). In an anti-inflammatory assay, ZnO/DNA-HCl NGs significantly inhibited TNF-α, IL-6, iNOS and COX-2 expression in LPS-stimulated Raw264.7 cells. Moreover, the ZnO/DNA-HCl NGs markedly alleviated clinical symptoms in LPS-induced mouse peritonitis. Finally, ZnO/DNA-HCl NGs suppressed E. coli from entering circulation in septic mice while prolonging their survival. Our results suggest that the ZnO/DNA-HCl NGs, which mimic NET-like structures in the blocking of bacteria-inducted inflammation, may be a potential therapeutic strategy for bacterial infections.


Assuntos
Armadilhas Extracelulares , Peritonite , Óxido de Zinco , Animais , DNA , Escherichia coli , Camundongos , Nanogéis , Neutrófilos , Peritonite/tratamento farmacológico
18.
Gels ; 7(3)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34563017

RESUMO

In this research, we studied the effect of polypeptide composition and topology on the hydrogelation of star-shaped block copolypeptides based on hydrophilic, coil poly(L-lysine)20 (s-PLL20) tethered with a hydrophobic, sheet-like polypeptide segment, which is poly(L-phenylalanine) (PPhe), poly(L-leucine) (PLeu), poly(L-valine) (PVal) or poly(L-alanine) (PAla) with a degree of polymerization (DP) about 5. We found that the PPhe, PLeu, and PVal segments are good hydrogelators to promote hydrogelation. The hydrogelation and hydrogel mechanical properties depend on the arm number and hydrophobic polypeptide segment, which are dictated by the amphiphilic balance between polypeptide blocks and the hydrophobic interactions/hydrogen bonding exerted by the hydrophobic polypeptide segment. The star-shaped topology could facilitate their hydrogelation due to the branching chains serving as multiple interacting depots between hydrophobic polypeptide segments. The 6-armed diblock copolypeptides have better hydrogelation ability than 3-armed ones and s-PLL-b-PPhe exhibits better hydrogelation ability than s-PLL-b-PVal and s-PLL-b-PLeu due to the additional cation-π and π-π interactions. This study highlights that polypeptide composition and topology could be additional parameters to manipulate polypeptide hydrogelation.

19.
Pharmaceutics ; 14(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35056983

RESUMO

Nanosized drug delivery systems targeting transporters of the blood-brain barrier (BBB) are promising carriers to enhance the penetration of therapeutics into the brain. The expression of solute carriers (SLC) is high and shows a specific pattern at the BBB. Here we show that targeting ligands ascorbic acid, leucine and glutathione on nanoparticles elevated the uptake of albumin cargo in cultured primary rat brain endothelial cells. Moreover, we demonstrated the ability of the triple-targeted nanovesicles to deliver their cargo into midbrain organoids after crossing the BBB model. The cellular uptake was temperature- and energy-dependent based on metabolic inhibition. The process was decreased by filipin and cytochalasin D, indicating that the cellular uptake of nanoparticles was partially mediated by endocytosis. The uptake of the cargo encapsulated in triple-targeted nanoparticles increased after modification of the negative zeta potential of endothelial cells by treatment with a cationic lipid or after cleaving the glycocalyx with an enzyme. We revealed that targeted nanoparticles elevated plasma membrane fluidity, indicating the fusion of nanovesicles with endothelial cell membranes. Our data indicate that labeling nanoparticles with three different ligands of multiple transporters of brain endothelial cells can promote the transfer and delivery of molecules across the BBB.

20.
Colloids Surf B Biointerfaces ; 196: 111316, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32827950

RESUMO

Biomimetic hydrogels which possess good biocompatibility, high degradability, and low toxicity as well as good antibacterial activity against various bacteria would potentially be promising for biomaterial applications, such as wound healing, tissue engineering, and payload delivery systems. Herein, we report the synthesis and hydrogelation of L-Dopa conjugated (GPLD) polypeptides via a versatile strategy including enzymatic cross-linking or coordinated/oxidized cross-linking with Fe3+ ions and demonstrated the feasibility of loading cancer drug and metal NPs in hydrogel matrix. The drug-loaded hydrogel was simply prepared via coordinated/oxidized cross-linking by Fe3+ and H2O2 within short gelation time. Doxorubicin (DOX) was encapsulated in the hydrogel network through the formation of metal-DOX/catechol complexes. The catechol groups acted not only as the complexing depots for DOX encapsulation but also as cross-linking depots for hydrogel formation. The mechanical strength, swelling ratio, and degradability behavior could be tuned by varying Fe3+/H2O2 or enzyme/H2O2 concentration. The as-prepared hydrogel exhibited excellent pH-responsive drug release behavior and the ability to effectively kill cancer cells by pH-triggered release of DOX. We also demonstrated that the enzymatically cross-linked hydrogels loaded with metal nanoparticles (NPs) exhibiting excellent antimicrobial activities. This multifunctional hydrogel is promising for drug delivery and antimicrobial applications.


Assuntos
Gelatina , Hidrogéis , Antibacterianos/farmacologia , Biomimética , Doxorrubicina/farmacologia , Portadores de Fármacos , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Levodopa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA