Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Future Gener Comput Syst ; 122: 40-51, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34393306

RESUMO

In the densely populated Internet of Things (IoT) applications, sensing range of the nodes might overlap frequently. In these applications, the nodes gather highly correlated and redundant data in their vicinity. Processing these data depletes the energy of nodes and their upstream transmission towards remote datacentres, in the fog infrastructure, may result in an unbalanced load at the network gateways and edge servers. Due to heterogeneity of edge servers, few of them might be overwhelmed while others may remain less-utilized. As a result, time-critical and delay-sensitive applications may experience excessive delays, packet loss, and degradation in their Quality of Service (QoS). To ensure QoS of IoT applications, in this paper, we eliminate correlation in the gathered data via a lightweight data fusion approach. The buffer of each node is partitioned into strata that broadcast only non-correlated data to edge servers via the network gateways. Furthermore, we propose a dynamic service migration technique to reconfigure the load across various edge servers. We assume this as an optimization problem and use two meta-heuristic algorithms, along with a migration approach, to maintain an optimal Gateway-Edge configuration in the network. These algorithms monitor the load at each server, and once it surpasses a threshold value (which is dynamically computed with a simple machine learning method), an exhaustive search is performed for an optimal and balanced periodic reconfiguration. The experimental results of our approach justify its efficiency for large-scale and densely populated IoT applications.

2.
J Netw Comput Appl ; 1752021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34690484

RESUMO

The Internet of Multimedia Things (IoMT) orchestration enables the integration of systems, software, cloud, and smart sensors into a single platform. The IoMT deals with scalar as well as multimedia data. In these networks, sensor-embedded devices and their data face numerous challenges when it comes to security. In this paper, a comprehensive review of the existing literature for IoMT is presented in the context of security and blockchain. The latest literature on all three aspects of security, i.e., authentication, privacy, and trust is provided to explore the challenges experienced by multimedia data. The convergence of blockchain and IoMT along with multimedia-enabled blockchain platforms are discussed for emerging applications. To highlight the significance of this survey, large-scale commercial projects focused on security and blockchain for multimedia applications are reviewed. The shortcomings of these projects are explored and suggestions for further improvement are provided. Based on the aforementioned discussion, we present our own case study for healthcare industry: a theoretical framework having security and blockchain as key enablers. The case study reflects the importance of security and blockchain in multimedia applications of healthcare sector. Finally, we discuss the convergence of emerging technologies with security, blockchain and IoMT to visualize the future of tomorrow's applications.

3.
IEEE Trans Industr Inform ; 17(7): 5128-5137, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33994885

RESUMO

Industrial Internet of Things (IIoT) ensures reliable and efficient data exchanges among the industrial processes using Artificial Intelligence (AI) within the cyber-physical systems. In the IIoT ecosystem, devices of industrial applications communicate with each other with little human intervention. They need to act intelligently to safeguard the data confidentiality and devices' authenticity. The ability to gather, process, and store real-time data depends on the quality of data, network connectivity, and processing capabilities of these devices. Pervasive Edge Computing (PEC) is gaining popularity nowadays due to the resource limitations imposed on the sensor-embedded IIoT devices. PEC processes the gathered data at the network edge to reduce the response time for these devices. However, PEC faces numerous research challenges in terms of secured communication, network connectivity, and resource utilization of the edge servers. To address these challenges, we propose a secured and intelligent communication scheme for PEC in an IIoT-enabled infrastructure. In the proposed scheme, forged identities of adversaries, i.e., Sybil devices, are detected by IIoT devices and shared with edge servers to prevent upstream transmission of their malicious data. Upon Sybil attack detection, each edge server executes a parallel Artificial Bee Colony (pABC) algorithm to perform optimal network configuration of IIoT devices. Each edge server performs the job migration to their neighboring servers for load balancing and better network performance, based on their processing and storage capabilities. The experimental results justify the efficiency of our proposed scheme in terms of Sybil attack detection, the convergence curves of our pABC algorithm, delay, throughput, and control overhead of data communication using PEC for IIoT.

4.
IEEE Trans Industr Inform ; 17(9): 6519-6527, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37981912

RESUMO

A novel intelligent navigation technique for accurate image-guided COVID-19 lung biopsy is addressed, which systematically combines augmented reality (AR), customized haptic-enabled surgical tools, and deep neural network to achieve customized surgical navigation. Clinic data from 341 COVID-19 positive patients, with 1598 negative control group, have collected for the model synergy and evaluation. Biomechanics force data from the experiment are applied a WPD-CNN-LSTM (WCL) to learn a new patient-specific COVID-19 surgical model, and the ResNet was employed for the intraoperative force classification. To boost the user immersion and promote the user experience, intro-operational guiding images have combined with the haptic-AR navigational view. Furthermore, a 3-D user interface (3DUI), including all requisite surgical details, was developed with a real-time response guaranteed. Twenty-four thoracic surgeons were invited to the objective and subjective experiments for performance evaluation. The root-mean-square error results of our proposed WCL model is 0.0128, and the classification accuracy is 97%, which demonstrated that the innovative AR with deep learning (DL) intelligent model outperforms the existing perception navigation techniques with significantly higher performance. This article shows a novel framework in the interventional surgical integration for COVID-19 and opens the new research about the integration of AR, haptic rendering, and deep learning for surgical navigation.

5.
IEEE Trans Industr Inform ; 17(8): 5829-5839, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33981186

RESUMO

Industry 5.0 is the digitalization, automation and data exchange of industrial processes that involve artificial intelligence, Industrial Internet of Things (IIoT), and Industrial Cyber-Physical Systems (I-CPS). In healthcare, I-CPS enables the intelligent wearable devices to gather data from the real-world and transmit to the virtual world for decision-making. I-CPS makes our lives comfortable with the emergence of innovative healthcare applications. Similar to any other IIoT paradigm, I-CPS capable healthcare applications face numerous challenging issues. The resource-constrained nature of wearable devices and their inability to support complex security mechanisms provide an ideal platform to malevolent entities for launching attacks. To preserve the privacy of wearable devices and their data in an I-CPS environment, we propose a lightweight mutual authentication scheme. Our scheme is based on client-server interaction model that uses symmetric encryption for establishing secured sessions among the communicating entities. After mutual authentication, the privacy risk associated with a patient data is predicted using an AI-enabled Hidden Markov Model (HMM). We analyzed the robustness and security of our scheme using BurrowsAbadiNeedham (BAN) logic. This analysis shows that the use of lightweight security primitives for the exchange of session keys makes the proposed scheme highly resilient in terms of security, efficiency, and robustness. Finally, the proposed scheme incurs nominal overhead in terms of processing, communication and storage and is capable to combat a wide range of adversarial threats.

6.
Sensors (Basel) ; 19(19)2019 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-31590452

RESUMO

The Internet of Things (IoT) is an emerging technology that aims to enable the interconnection of a large number of smart devices and heterogeneous networks. Ad hoc networks play an important role in the designing of IoT-enabled platforms due to their efficient, flexible, low-cost and dynamic infrastructures. These networks utilize the available resources efficiently to maintain the Quality of Service (QoS) in a multi-hop communication. However, in a multi-hop communication, the relay nodes can be malicious, thus requiring a secured and reliable data transmission. In this paper, we propose a QoS-aware secured communication scheme for IoT-based networks (QoS-IoT). In QoS-IoT, a Sybil attack detection mechanism is used for the identification of Sybil nodes and their forged identities in multi-hop communication. After Sybil nodes detection, an optimal contention window (CW) is selected for QoS provisioning, that is, to achieve per-flow fairness and efficient utilization of the available bandwidth. In a multi-hop communication, the medium access control (MAC) layer protocols do not perform well in terms of fairness and throughput, especially when the nodes generate a large amount of data. It is because the MAC layer has no capability of providing QoS to prioritized or forwarding flows. We evaluate the performance of QoS-IoT in terms of Sybil attack detection, fairness, throughput and buffer utilization. The simulation results show that the proposed scheme outperforms the existing schemes and significantly enhances the performance of the network with a large volume of data. Moreover, the proposed scheme is resilient against Sybil attack.

7.
Artigo em Inglês | MEDLINE | ID: mdl-37610908

RESUMO

Data mining, integration, and utilization are the inevitable trend of the Internet of Medical Things (IoMT) in the context of big data. With the increasing demand for data privacy, federated learning has emerged as a new paradigm, which enables distributed joint training of medical data sources without leaving the private domain. However, federated learning is suffering from security threats as the shared local model will reveal original datasets. Privacy leakage is even more fatal in healthcare because medical data contains critically sensitive information. In addition, open wireless channels are susceptible to malicious attacks. To further safeguard the privacy of IoMT, we propose a comprehensive privacy-preserving federated learning scheme with a tactful dropout handling mechanism. The proposed scheme leverages blind masking and certificateless proxy re-encryption (CL-PRE) for secure aggregation, ensuring the confidentiality of the local model and rendering the global model invisible to any parties other than clients. It also provides authentication of uploaded models while protecting identity privacy. Compared with other relevant schemes, our solution has better performance on functional features and efficiency, and is more applicable to IoMT systems with many devices.

8.
IEEE Internet Things J ; 9(22): 22173-22183, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37448955

RESUMO

Cyber-Physical Systems (CPS) connected in the form of Internet of Things (IoT) are vulnerable to various security threats, due to the infrastructure-less deployment of IoT devices. Device-to-Device (D2D) authentication of these networks ensures the integrity, authenticity, and confidentiality of information in the deployed area. The literature suggests different approaches to address security issues in CPS technologies. However, they are mostly based on centralized techniques or specific system deployments with higher cost of computation and communication. It is therefore necessary to develop an effective scheme that can resolve the security problems in CPS technologies of IoT devices. In this paper, a lightweight Hash-MAC-DSDV (Hash Media Access Control Destination Sequence Distance Vector) routing scheme is proposed to resolve authentication issues in CPS technologies, connected in the form of IoT networks. For this purpose, a CPS of IoT devices (multi-WSNs) is developed from the local-chain and public chain, respectively. The proposed scheme ensures D2D authentication by the Hash-MAC-DSDV mutual scheme, where the MAC addresses of individual devices are registered in the first phase and advertised in the network in the second phase. The proposed scheme allows legitimate devices to modify their routing table and unicast the one-way hash authentication mechanism to transfer their captured data from source towards the destination. Our evaluation results demonstrate that Hash-MAC-DSDV outweighs the existing schemes in terms of attack detection, energy consumption and communication metrics.

9.
IEEE Trans Green Commun Netw ; 5(3): 1202-1211, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35449692

RESUMO

Internet of Things (IoT) is considered as a key enabler of health informatics. IoT-enabled devices are used for in-hospital and in-home patient monitoring to collect and transfer biomedical data pertaining to blood pressure, electrocardiography (ECG), blood sugar levels, body temperature, etc. Among these devices, wearables have found their presence in a wide range of healthcare applications. These devices generate data in real-time and transmit them to nearby gateways and remote servers for processing and visualization. The data transmitted by these devices are vulnerable to a range of adversarial threats, and as such, privacy and integrity need to be preserved. In this paper, we present LightIoT, a lightweight and secure communication approach for data exchanged among the devices of a healthcare infrastructure. LightIoT operates in three phases: initialization, pairing, and authentication. These phases ensure the reliable transmission of data by establishing secure sessions among the communicating entities (wearables, gateways and a remote server). Statistical results exhibit that our scheme is lightweight, robust, and resilient against a wide range of adversarial attacks and incurs much lower computational and communication overhead for the transmitted data in the presence of existing approaches.

11.
Artif Intell Med ; 79: 62-70, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28655440

RESUMO

Cancer is a fatal disease, responsible for one-quarter of all deaths in developed countries. Traditional anticancer therapies such as, chemotherapy and radiation, are highly expensive, susceptible to errors and ineffective techniques. These conventional techniques induce severe side-effects on human cells. Due to perilous impact of cancer, the development of an accurate and highly efficient intelligent computational model is desirable for identification of anticancer peptides. In this paper, evolutionary intelligent genetic algorithm-based ensemble model, 'iACP-GAEnsC', is proposed for the identification of anticancer peptides. In this model, the protein sequences are formulated, using three different discrete feature representation methods, i.e., amphiphilic Pseudo amino acid composition, g-Gap dipeptide composition, and Reduce amino acid alphabet composition. The performance of the extracted feature spaces are investigated separately and then merged to exhibit the significance of hybridization. In addition, the predicted results of individual classifiers are combined together, using optimized genetic algorithm and simple majority technique in order to enhance the true classification rate. It is observed that genetic algorithm-based ensemble classification outperforms than individual classifiers as well as simple majority voting base ensemble. The performance of genetic algorithm-based ensemble classification is highly reported on hybrid feature space, with an accuracy of 96.45%. In comparison to the existing techniques, 'iACP-GAEnsC' model has achieved remarkable improvement in terms of various performance metrics. Based on the simulation results, it is observed that 'iACP-GAEnsC' model might be a leading tool in the field of drug design and proteomics for researchers.


Assuntos
Algoritmos , Biologia Computacional , Peptídeos/uso terapêutico , Aminoácidos , Antineoplásicos , Simulação por Computador , Humanos , Neoplasias/terapia , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA