Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012128

RESUMO

Notch signaling is associated with many human malignancies, including oral squamous cell carcinoma (OSCC). However, the exact function of Notch signaling in OSCC remains unclear. Here, we investigated the effect of Notch signaling inhibition using a γ-secretase inhibitor (DAPT) on OSCC behaviours in vitro. Bioinformatic analysis of public-available gene expression profiles revealed the dysregulation of the Notch signaling pathway in OSCC compared with normal tissues, indicating the role of Notch signaling in OSCC regulation. RNA sequencing analysis of DAPT-treated human OSCC cells revealed the dysregulation of genes related to cell cycle-related pathways. Blocking Notch signaling significantly inhibited cell proliferation. DAPT-induced G0/G1 cell cycle arrest induced cell apoptosis. Furthermore, cell migration and invasion were also reduced in DAPT-treated cells. These findings indicate that Notch signaling activation participates in OSCC regulation by promoting cell growth, cell cycle progression, cell migration, and invasion. These mechanisms could facilitate OSCC progression. These results imply the potential use of Notch signaling inhibitors as a candidate adjuvant treatment in OSCC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Secretases da Proteína Precursora do Amiloide/metabolismo , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço
2.
Nutr Cancer ; 73(10): 2014-2029, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32929998

RESUMO

This study examined associations between the effect of treatment with nano-cassava starch that contained cordycepin (CS) extract, targeting human submandibular gland cells (HSGs), and human oral squamous carcinoma cells (HSC-4). Cassava starch nanoparticles (CSNPs) were prepared by either physical or acid treatment. These nanoparticles were then loaded with either CS or cordyceps medium and then treated with HSG or HSC-4 cells in different concentrations of CS and nanoparticles. Moreover, the protein secretion, reactive oxygen species (ROS) activity and the expression of salivary-specific genes, antioxidant gene were determined after treatment. CSNPs can enhance the activity of CS at low concentrations. Cordycepin-loaded cassava starch nanoparticles (CCSNPs) increased HSG proliferation, protein secretion, and the expression of salivary-specific genes, AMY and AQP5. Besides, CCSNPs also protected and scavenged of ROS via the stimulation of the antioxidant genes in HSGs, indicating the protective roles of CS to HSGs. On the other hand, CCSNPs inhibited the growth of HSC-4 cells by stimulating ROS generation and reducing protein secretion. This finding suggested that CCSNPs presented the dual actions against HSGs and human oral squamous carcinoma cells, and the encapsulation of CS with cassava nanoparticles enhanced the activity of CS.


Assuntos
Carcinoma de Células Escamosas , Manihot , Nanopartículas , Carcinoma de Células Escamosas/tratamento farmacológico , Proliferação de Células , Desoxiadenosinas , Humanos , Amido , Glândula Submandibular
3.
Int J Med Sci ; 17(12): 1733-1743, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714076

RESUMO

Xerostomia (dry mouth) is a significant age-related condition. Meanwhile, cordycepin, the natural therapeutic agent, has demonstrated an anti-aging effect. Therefore, the present study aimed to investigate the preventive effects of cordycepin on secretory function in an in vitro model of hydrogen peroxide (H2O2)-induced salivary hypofunction. After being exposed to H2O2, human submandibular gland (HSG) cells were treated with various concentrations of cordycepin (6.25-50 µM) for 24, 48, and 72h. To evaluate cell proliferation and reactive oxygen species (ROS) generation, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide and 2, 7'-dichlorodihydrofluorescein diacetate assays were performed. The amylase activity was kinetically measured by 2-chloro-p-nitrophenol linked with maltotrioside. The expression of salivary, antioxidant and apoptotic markers at mRNA and protein levels were performed by reverse transcriptase polymerase chain reaction (RT-PCR) and immunofluorescence analysis, respectively. We demonstrated that cordycepin (6.25-25 µM) contributed to significant increases in expression of the salivary marker genes, alpha-amylase 1 (AMY1A) and aquaporin-5 (AQP5), and in amylase secretion without changes in cell viability. Under oxidative stress, HSG cells showed remarkable dysfunction. Cordycepin rescued the protective effects partially by decreasing ROS generation and restoring the expression of the salivary proteins, AMY and AQP5 via anti-oxidant and anti-apoptotic activity. In addition, the amount of amylase that was secreted from HSG cells cultured in cordycepin was increased. In conclusion, cordycepin demonstrated a protective effect on H2O2 -induced HSG cells by decreasing ROS generation and upregulating the salivary function markers, AMY1A and AQP5, at both the transcriptional and translational levels.


Assuntos
Aquaporina 5/genética , Desoxiadenosinas/farmacologia , alfa-Amilases Salivares/genética , Xerostomia/tratamento farmacológico , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Saliva/efeitos dos fármacos , Saliva/metabolismo , Proteínas e Peptídeos Salivares/genética , Glândula Submandibular/efeitos dos fármacos , Glândula Submandibular/patologia , Xerostomia/induzido quimicamente , Xerostomia/patologia
4.
J Pathol ; 240(4): 410-424, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27569721

RESUMO

Fibrosis is a characteristic of Duchenne muscular dystrophy (DMD), yet the cellular and molecular mechanisms responsible for DMD fibrosis are poorly understood. Utilizing the Collagen1a1-GFP transgene to identify cells producing Collagen-I matrix in wild-type mice exposed to toxic injury or those mutated at the dystrophin gene locus (mdx) as a model of DMD, we studied mechanisms of skeletal muscle injury/repair and fibrosis. PDGFRα is restricted to Sca1+, CD45- mesenchymal progenitors. Fate-mapping experiments using inducible CreER/LoxP somatic recombination indicate that these progenitors expand in injury or DMD to become PDGFRα+, Col1a1-GFP+ matrix-forming fibroblasts, whereas muscle fibres do not become fibroblasts but are an important source of the PDGFRα ligand, PDGF-AA. While in toxin injury/repair of muscle PDGFRα, signalling is transiently up-regulated during the regenerative phase in the DMD model and in human DMD it is chronically overactivated. Conditional expression of the constitutively active PDGFRα D842V mutation in Collagen-I+ fibroblasts, during injury/repair, hindered the repair phase and instead promoted fibrosis. In DMD, treatment of mdx mice with crenolanib, a highly selective PDGFRα/ß tyrosine kinase inhibitor, reduced fibrosis, improved muscle strength, and was associated with decreased activity of Src, a downstream effector of PDGFRα signalling. These observations are consistent with a model in which PDGFRα activation of mesenchymal progenitors normally regulates repair of the injured muscle, but in DMD persistent and excessive activation of this pathway directly drives fibrosis and hinders repair. The PDGFRα pathway is a potential new target for treatment of progressive DMD. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Colágeno Tipo I/biossíntese , Distrofia Muscular de Duchenne/patologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/fisiologia , Animais , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Células Cultivadas , Modelos Animais de Doenças , Distrofina/genética , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibrose , Masculino , Camundongos Transgênicos , Força Muscular/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Mutação , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Regeneração/efeitos dos fármacos , Regeneração/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
5.
Eur J Dent ; 18(1): 219-227, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37105221

RESUMO

OBJECTIVE: This study aimed to examine the effect of periodontal ligament stem cell conditioned medium (PDLSC-CM) on human gingival fibroblast (HGF) migration and collagen synthesis. MATERIALS AND METHODS: To assess cell viability, we extracted PDLSC-CM, and the total derived protein concentration was adjusted to 12.5 to 200 µg/mL, followed by treatment with HGFs. The viability of HGFs was observed for 24 hours using the MTT assay. Cell migration was monitored for 24 to 48 hours by wound healing and Boyden chamber assays. Collagen synthesis from HGFs was examined by picrosirius red dye and real-time polymerase chain reaction (PCR) to measure collagen type I and III gene expression for 7 to 10 days. A comparison among the groups was assessed using a one-way analysis of variance (ANOVA) and Bonferroni post hoc test, with the exception of the cell viability assay, which was subjected to Welch's test and Dunnett's T3 post hoc test. RESULTS: HGF viability was significantly enhanced by 12.5, 25, and 50 µg/mL PDLSC-CM. The HGFs treated with 50 µg/mL PDLSC-CM promoted cell migration as shown by wound healing and Boyden chamber assays. At this concentration, collagen synthesis increased at 10 days. Collagen type I gene expression increased by 1.6-fold (p < 0.001) and 4.96-fold (p < 0.001) at 7 and 10 days, respectively. Collagen type III gene expression showed an increase of 1.76-fold (p < 0.001) and 6.67-fold (p < 0.001) at the same time points. CONCLUSION: Our study suggested that a low concentration of PDLSC-CM at 50 µg/mL has given an amelioration of HGFs providing for periodontal wound healing and periodontal regeneration, particularly migration and collagen synthesis.

6.
Eur J Dent ; 18(1): 297-303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37311552

RESUMO

OBJECTIVE: This study aimed to preliminarily evaluate the expression of two putative tumor suppressor proteins, including chronic lymphocytic leukemia deletion gene 7 (CLLD7) and chromosome condensation 1-like (CHC1L) proteins in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS: Expression of CLLD7 and CHC1L proteins was analyzed in 19 OSCC and 12 normal oral mucosa (NOM) using immunohistochemistry. The percentage of positive cells and intensity of staining were semiquantitatively assessed and expressed with an immunoreactive score. The number of positive cells at various subcellular localizations was evaluated and presented in percentages. The immunoreactivity scores and percentages of positive cells at various localizations were compared between the normal and OSCC groups with statistical significance at p-value less than 0.05. RESULTS: According to immunohistochemical analysis, the immunoreactivity scores for both CLLD7 and CHC1L were higher in NOM than those of OSCC. Analysis of CLLD7 localization revealed predominant nuclear staining at basal and parabasal areas in NOM, whereas more cytoplasmic staining was observed in OSCC. For CHC1L, nuclear staining was prominent in NOM. In contrast, significantly increased plasma membrane staining was detected in OSCC. CONCLUSION: The expression of CLLD7 and CHC1L proteins was reduced in OSCC. Alterations in the subcellular localization of these two proteins in OSCC were also demonstrated. These preliminary results suggest that CLLD7 and CHC1L are aberrantly expressed in OSCC. The precise mechanisms of these putative tumor suppressor proteins in OSCC require future studies.

7.
J Mol Cell Cardiol ; 63: 122-34, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23911435

RESUMO

In Duchenne muscular dystrophy (DMD), progressive accumulation of cardiac fibrosis promotes heart failure. While the cellular origins of fibrosis in DMD hearts remain enigmatic, fibrotic tissue conspicuously forms near the coronary adventitia. Therefore, we sought to characterize the role of coronary adventitial cells in the formation of perivascular fibrosis. Utilizing the mdx model of DMD, we have identified a population of Sca1+, PDGFRα+, CD31-, and CD45- coronary adventitial cells responsible for perivascular fibrosis. Histopathology of dystrophic hearts revealed that Sca1+ cells extend from the adventitia and occupy regions of perivascular fibrosis. The number of Sca1+ adventitial cells increased two-fold in fibrotic mdx hearts vs. age matched wild-type hearts. Moreover, relative to Sca1-, PDGFRα+, CD31-, and CD45- cells and endothelial cells, Sca1+ adventitial cells FACS-sorted from mdx hearts expressed the highest level of Collagen1α1 and 3α1, Connective tissue growth factor, and Tgfßr1 transcripts. Surprisingly, mdx endothelial cells expressed the greatest level of the Tgfß1 ligand. Utilizing Collagen1α1-GFP reporter mice, we confirmed that the majority of Sca1+ adventitial cells expressed type I collagen, an abundant component of cardiac fibrosis, in both wt (71%±4.1) and mdx (77%±3.5) hearts. In contrast, GFP+ interstitial fibroblasts were PDGFRα+ but negative for Sca1. Treatment of cultured Collagen1α1-GFP+ adventitial cells with TGFß1 resulted in increased collagen synthesis, whereas pharmacological inhibition of TGFßR1 signaling reduced the fibrotic response. Therefore, perivascular cardiac fibrosis by coronary adventitial cells may be mediated by TGFß1 signaling. Our results implicate coronary endothelial cells in mediating cardiac fibrosis via transmural TGFß signaling, and suggest that the coronary adventitia is a promising target for developing novel anti-fibrotic therapies.


Assuntos
Túnica Adventícia/citologia , Túnica Adventícia/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Vasos Coronários/metabolismo , Distrofia Muscular de Duchenne/complicações , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Animais , Antígenos Ly/metabolismo , Cardiomiopatias/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Vasos Coronários/patologia , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Fibrose/genética , Intestinos/citologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Pericitos
9.
Geriatrics (Basel) ; 8(4)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37489324

RESUMO

AIM: To investigate the prevalence of xerostomia in older people with diabetes mellitus and its impacts on oral functions, as well as to determine potential risk factors for xerostomia. METHODS: An analytical cross-sectional study was conducted on 623 older type 2 diabetes mellitus (T2DM) Thai people using valid structural questionnaires. Patients were interviewed, and data were recorded. Xerostomia was assessed using subjective symptom questionnaires. Risk factors for xerostomia were analyzed using bivariate and multiple logistic regression analyses. RESULTS: Among the study participants, 38.4% of the older T2DM people had xerostomia, which is associated with sex, age, type of toothpaste, years of diabetes, hemoglobin A1c level, other systemic diseases, medication, smoking, alcohol consumption, and denture wearing. It was significant that xerostomia was associated with toothpaste containing spicy herbal extracts (OR: 9.32 [3.46 to 15.25]), while toothpaste containing artificial sweeteners tended to lower the risk of xerostomia. In addition, older T2DM adults with xerostomia had greater impaired oral functions, which include difficulties in speaking (OR: 3.31 [1.11 to 9.80]), tasting (OR: 5.12 [3.26 to 8.06]), swallowing (OR: 3.59 [2.32 to 5.53]), and chewing (OR: 3.34 [1.15 to 5.82]). CONCLUSIONS: Xerostomia is prevalent in older Thai people with T2DM. The results suggest that toothpaste containing spicy herbal extracts might increase the risk of xerostomia, resulting in various oral function problems. Therefore, greater awareness of xerostomia in this group should be raised to monitor dental health, and professionals should work in parallel with other aspects of oral health promotion.

10.
J Int Soc Prev Community Dent ; 12(5): 506-512, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532325

RESUMO

Aim: This in vitro study aimed to investigate the effect of propolis extracts from two different solvents on human submandibular salivary gland (HSG) tumor cell line. Materials and Methods: Propolis was extracted by dichloromethane (DCM) and hexane (HEX). Crude extracts were prepared from 6.25 to 200 µg/mL in Dulbecco's modified eagle medium without serum. Flavonoid and total phenolic contents of crude extracts were measured using a modified colorimetric method. The cytotoxicity was evaluated by 3-[4, 5-dimethylthiazol-2-yl]-2,5 diphenyl-tetrazolium (MTT) assay and lactate dehydrogenase (LDH) release assay. The statistics were analyzed by independent sample t-test. Results: Propolis extracts obtained using DCM and HEX exhibited comparable % yield (38.58 and 38.25) and physical characteristics and different amounts of flavonoid (0.439 ± 0.02 and 0.250 ± 0.01 mg catechin/g sample) and total phenolic compounds (3.759 ± 0.03 and 1.618 ± 0.03 mg gallic acid equivalents/g sample). The DCM group at 25, 50, 100, and 200 µg/mL as well as the HEX group at 50, 100, and 200 µg/mL significantly displayed a decrease in % cell viability and an increase in % cytotoxicity, compared with the untreated control group (P < 0.05). The DCM group showed the half-maximal inhibitory concentration (IC50) of MTT (42.93 ± 2.70) and LDH (34.94 ± 0.22). The HEX group showed the IC50 of MTT (61.30 ± 5.39) and LDH (42.32 ± 1.00). Propolis extracts obtained using both DCM and HEX are effective to inhibit HSG viability. Conclusion: Regarding to the cell morphological observation, MTT and LDH assays, propolis extracts obtained using DCM and HEX exhibited the cytotoxic effect on HSG tumor cell line. Based on our knowledge, this research demonstrates the first preliminary result suggesting propolis as a natural product of choice for salivary gland cancer prevention and therapy.

11.
Eur J Dent ; 16(4): 930-937, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35580628

RESUMO

OBJECTIVE: Salivary gland diseases and their pathologies may affect the glandular structure including collagen, a major stromal component, in response to tissue damage or diseases. This study aimed to examine the changes in collagens in different salivary gland diseases using polarized picrosirius red staining. MATERIALS AND METHODS: The submandibular gland samples diagnosed as sialadenitis, chronic sclerosing sialadenitis, pleomorphic adenoma, adenoid cystic carcinoma, and mucoepidermoid carcinoma were stained with picrosirius red, Masson's trichrome, and anticollagen I staining. The quantity of collagens was examined and reported as a percentage of positive picrosirius red area. The maturity of collagens was studied with polarized light microscope and reported as a percentage of orange-red and yellow-green polarized collagens, representing the mature and immature collagens, respectively. STATISTICAL ANALYSIS: The % positive areas for picrosirius red representing the collagen amount among salivary gland diseases were analyzed by one-way analysis of variance with Tukey's test. The % orange-red and % yellow-green polarized areas representing the collagen maturity were analyzed by Kruskal-Wallis test and Mann-Whitney U test. RESULTS: The malignant tumors, adenoid cystic carcinoma (29.92) and mucoepidermoid carcinoma (26.59), had higher significant percentage of positive picrosirius red area, compared with the benign tumor (14.56), chronic sclerosing sialadenitis (10.61), and sialadenitis (7.22) (p < 0.05). The percentages of orange-red polarized areas are 48.07, 39.6, 62.67, 83.75, and 76.05 in sialadenitis, chronic sclerosing sialadenitis, pleomorphic adenoma, adenoid cystic carcinoma, and mucoepidermoid carcinoma, respectively. This percentage tended to increase in the benign and malignant lesions with statistical difference, compared with the inflammatory lesions (p < 0.05). There was no statistical difference in the percentages of yellow-green polarized areas among various salivary gland diseases. In addition, the results of Masson's trichrome and anticollagen I staining are corresponding to that of picrosirius red among various salivary gland diseases. CONCLUSIONS: Polarized picrosirius red demonstrated the most amounts of collagen in the malignant lesion, and represented the different maturity of collagens in each lesion group. Studying the amounts and maturity of collagen with picrosirius red for extracellular matrix alteration in salivary gland diseases along with routine hematoxylin and eosin, Masson's trichrome, and immunohistochemistry may provide a better understanding in different salivary gland pathologies.

12.
Front Cell Dev Biol ; 9: 665886, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249919

RESUMO

Dental pulp stem cells (DPSCs) are a source of postnatal stem cells essential for maintenance and regeneration of dentin and pulp tissues. Previous in vivo transplantation studies have shown that DPSCs are able to give rise to odontoblast-like cells, form dentin/pulp-like structures, and induce blood vessel formation. Importantly, dentin formation is closely associated to blood vessels. We have previously demonstrated that DPSC-induced angiogenesis is VEGFR-2-dependent. VEGFR-2 may play an important role in odontoblast differentiation of DPSCs, tooth formation and regeneration. Nevertheless, the role of VEGFR-2 signaling in odontoblast differentiation of DPSCs is still not well understood. Thus, in this study we aimed to determine the role of VEGFR-2 in odontoblast differentiation of DPSCs by knocking down the expression of VEGFR-2 in DPSCs and studying their odontoblast differentiation capacity in vitro and in vivo. Isolation and characterization of murine DPSCs was performed as previously described. DPSCs were induced by VEGFR-2 shRNA viral vectors transfection (MOI = 10:1) to silence the expression of VEGFR-2. The GFP+ expression in CopGFP DPSCs was used as a surrogate to measure the efficiency of transfection and verification that the viral vector does not affect the expression of VEGFR-2. The efficiency of viral transfection was shown by significant reduction in the levels of VEGFR-2 based on the Q-RT-PCR and immunofluorescence in VEGFR-2 knockdown DPSCs, compared to normal DPSCs. VEGFR-2 shRNA DPSCs expressed not only very low level of VEGFR-2, but also that of its ligand, VEGF-A, compared to CopGFP DPSCs in both transcriptional and translational levels. In vitro differentiation of DPSCs in osteo-odontogenic media supplemented with BMP-2 (100 ng/ml) for 21 days demonstrated that CopGFP DPSCs, but not VEGFR-2 shRNA DPSCs, were positive for alkaline phosphatase (ALP) staining and formed mineralized nodules demonstrated by positive Alizarin Red S staining. The expression levels of dentin matrix proteins, dentin matrix protein-1 (Dmp1), dentin sialoprotein (Dspp), and bone sialoprotein (Bsp), were also up-regulated in differentiated CopGFP DPSCs, compared to those in VEGFR-2 shRNA DPSCs, suggesting an impairment of odontoblast differentiation in VEGFR-2 shRNA DPSCs. In vivo subcutaneous transplantation of DPSCs with hydroxyapatite (HAp/TCP) for 5 weeks demonstrated that CopGFP DPSCs were able to differentiate into elongated and polarized odontoblast-like cells forming loose connective tissue resembling pulp-like structures with abundant blood vessels, as demonstrated by H&E, Alizarin Red S, and dentin matrix staining. On the other hand, in VEGFR-2 shRNA DPSC transplants, odontoblast-like cells were not observed. Collagen fibers were seen in replacement of dentin/pulp-like structures. These results indicate that VEGFR-2 may play an important role in dentin regeneration and highlight the potential of VEGFR-2 modulation to enhance dentin regeneration and tissue engineering as a promising clinical application.

13.
J Endod ; 45(3): 281-286, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30803535

RESUMO

INTRODUCTION: In regenerative endodontic procedures (REPs), a blood clot acts as a natural scaffold for regenerating dental pulp tissue. In current protocols, 17% EDTA is recommended for liberating growth factors from root dentin. Although EDTA affects clot formation in periodontal studies, the anticoagulant effect of EDTA has not been shown in REPs. Therefore, this study aimed to evaluate the effects of 17% EDTA on the characteristics and fiber density of blood clots using in vitro dentin blocks. METHODS: The roots of 35 human mandibular premolars were prepared to simulate open apices and irrigated with the following protocols: (1) normal saline solution (NSS), (2) EDTA (1 minute) + NSS (E1N), (3) EDTA (5 minutes) + NSS (E5N), (4) EDTA (1 minute) (E1), and (5) EDTA (5 minutes) (E5). The roots were split, and human blood was placed. The characteristics and fibrin density of clots were observed using a scanning electron microscope. Fibrin densities in all irrigation groups were evaluated using ImageJ software (National Institutes of Health, Bethesda, MD) and statistically analyzed using the Friedman test and the Kruskal-Wallis test with Bonferroni adjustment. RESULTS: Samples in the NSS, E1N, and E5N groups revealed denser fibers with an abundance of erythrocytes when compared with those in the E1 and E5 groups. Fiber densities in the E1 and E5 groups showed significantly lower values than those in the NSS, E1N, and E5N groups in all regions of roots (P < .05). No statistically significant difference at all levels was observed in all irrigation groups. CONCLUSIONS: A decrease in clot formation was affected by EDTA irrigation for 1 and 5 minutes. Final flushing with NSS could improve fibrin formation.


Assuntos
Anticoagulantes , Polpa Dentária/fisiologia , Ácido Edético/farmacologia , Regeneração , Endodontia Regenerativa , Trombose , Alicerces Teciduais , Fibrina/metabolismo , Humanos , Técnicas In Vitro , Endodontia Regenerativa/métodos , Trombose/metabolismo
14.
ACS Nano ; 11(12): 11954-11968, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29156133

RESUMO

Despite possessing substantial regenerative capacity, skeletal muscle can suffer from loss of function due to catastrophic traumatic injury or degenerative disease. In such cases, engineered tissue grafts hold the potential to restore function and improve patient quality of life. Requirements for successful integration of engineered tissue grafts with the host musculature include cell alignment that mimics host tissue architecture and directional functionality, as well as vascularization to ensure tissue survival. Here, we have developed biomimetic nanopatterned poly(lactic-co-glycolic acid) substrates conjugated with sphingosine-1-phosphate (S1P), a potent angiogenic and myogenic factor, to enhance myoblast and endothelial maturation. Primary muscle cells cultured on these functionalized S1P nanopatterned substrates developed a highly aligned and elongated morphology and exhibited higher expression levels of myosin heavy chain, in addition to genes characteristic of mature skeletal muscle. We also found that S1P enhanced angiogenic potential in these cultures, as evidenced by elevated expression of endothelial-related genes. Computational analyses of live-cell videos showed a significantly improved functionality of tissues cultured on S1P-functionalized nanopatterns as indicated by greater myotube contraction displacements and velocities. In summary, our study demonstrates that biomimetic nanotopography and S1P can be combined to synergistically regulate the maturation and vascularization of engineered skeletal muscles.


Assuntos
Lisofosfolipídeos/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Nanopartículas/química , Nanotecnologia , Neovascularização Patológica/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Diferenciação Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Células Endoteliais/citologia , Lisofosfolipídeos/química , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Nanopartículas/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo , Esfingosina/química , Esfingosina/metabolismo
15.
Tissue Eng Part A ; 20(21-22): 2817-29, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24749806

RESUMO

We have examined the effects of surface nanotopography and hyaluronic acid (HA) on in vitro chondrogenesis of dental pulp stem cells (DPSCs). Ultraviolet-assisted capillary force lithography was employed to fabricate well-defined nanostructured scaffolds of composite PEG-GelMA-HA hydrogels that consist of poly(ethylene glycol) dimethacrylate (PEGDMA), methacrylated gelatin (GelMA), and HA. Using this microengineered platform, we first demonstrated that DPSCs formed three-dimensional spheroids, which provide an appropriate environment for in vitro chondrogenic differentiation. We also found that DPSCs cultured on nanopatterned PEG-GelMA-HA scaffolds showed a significant upregulation of the chondrogenic gene markers (Sox9, Alkaline phosphatase, Aggrecan, Procollagen type II, and Procollagen type X), while downregulating the pluripotent stem cell gene, Nanog, and epithelial-mesenchymal genes (Twist, Snail, Slug) compared with tissue culture polystyrene-cultured DPSCs. Immunocytochemistry showed more extensive deposition of collagen type II in DPSCs cultured on the nanopatterned PEG-GelMA-HA scaffolds. These findings suggest that nanotopography and HA provide important cues for promoting chondrogenic differentiation of DPSCs.


Assuntos
Condrogênese/fisiologia , Polpa Dentária/citologia , Ácido Hialurônico/química , Metacrilatos/química , Nanoestruturas/ultraestrutura , Polietilenoglicóis/química , Células-Tronco/citologia , Engenharia Tecidual/métodos , Animais , Animais Recém-Nascidos , Materiais Biocompatíveis/síntese química , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Tamanho Celular , Sobrevivência Celular/fisiologia , Células Cultivadas , Polpa Dentária/fisiologia , Hidrogéis/química , Teste de Materiais , Camundongos , Nanoestruturas/química , Células-Tronco/fisiologia , Propriedades de Superfície
16.
Pathog Dis ; 72(1): 61-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24833344

RESUMO

Two hallmarks of advanced atherosclerosis are calcification and fibrosis. We hypothesized that Chlamydia pneumoniae infection may contribute to atherosclerosis by inducing the conversion of vascular smooth muscle cells to calcifying cells or by converting mesenchymal stem cells to osteochondrocytic or fibroblastic phenotypes. In this study, direct infection of bovine aortic smooth muscle cells (BSMCs) did not induce the expression of alkaline phosphatase or the deposition of extracellular calcium phosphate. However, conditioned media from C. pneumoniae-infected macrophages accelerated conversion of BSMCs to a calcifying phenotype. Treatment of the conditioned media with an anti-TNF-alpha blocking antibody abrogated this stimulatory effect. Treatment of perivascular Sca-1+, CD31-, CD45- cells from apoE-/- mouse aortas with the conditioned media from infected macrophages induced the Sca-1+ cells to produce collagen II, an additional marker of an osteochondrocytic phenotype. Treatment of mouse coronary perivascular Sca-1+, CD31-, CD45- cells with the supernatant from homogenates of C. pneumoniae-infected mouse lungs as compared to noninfected lungs induced expression of the Collagen 1α1 gene and deposition of collagen. Therefore, an increase in plasma cytokines or other factors in response to respiratory infection with C. pneumoniae or infection of macrophages within the blood vessel could contribute to both calcification and fibrosis of advanced atherosclerotic lesions.


Assuntos
Infecções por Chlamydia/patologia , Chlamydophila pneumoniae/fisiologia , Fibrose , Pulmão/microbiologia , Macrófagos/microbiologia , Células-Tronco Mesenquimais/patologia , Miócitos de Músculo Liso/patologia , Calcificação Vascular , Animais , Bovinos , Células Cultivadas , Meios de Cultivo Condicionados , Modelos Animais de Doenças , Pulmão/patologia , Macrófagos/imunologia , Camundongos Endogâmicos C57BL
17.
Dent Mater J ; 33(2): 157-65, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24682022

RESUMO

This present study investigated the potential of Morinda citrifolia leaf aqueous extract to induce osteogenic differentiation and matrix mineralization of human periodontal ligament (hPDL) cells. Human periodontal ligament cells were cultured in complete medium, ascorbic acid with ß-glycerophosphate, or Morinda citrifolia leaf aqueous extract. Morinda citrifolia leaf aqueous extract significantly increased alkaline phosphatase activity compared to culturing in complete medium or ascorbic acid with ß-glycerophosphate. Matrixcontaining mineralized nodules were formed only when the cells were cultured in the presence of Morinda citrifolia leaf aqueous extract. These nodules showed positive alizarin red S staining and were rich in calcium and phosphorus according to energy dispersive X-ray analysis. In conclusion, Morinda citrifolia leaf extract promoted osteogenic differentiation and matrix mineralization in human periodontal ligament cells, a clear indication of the therapeutic potential of Morinda citrifolia leaves in bone and periodontal tissue regeneration.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Morinda/química , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Adolescente , Adulto , Humanos , Ligamento Periodontal/citologia , Adulto Jovem
18.
Biomed Res Int ; 2013: 359412, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24282814

RESUMO

Isolation and ex vivo expansion of cardiac endothelial cells have been a recurrent challenge due to difficulties in isolation, cell heterogeneity, lack of specific markers to identify myocardial endothelial cells, and inadequate conditions to maintain long-term cultures. Herein, we developed a method for isolation, characterization, and expansion of cardiac endothelial cells applicable to study endothelial cell biology and clinical applications such as neoangiogenesis. First, we dissociated the cells from murine heart by mechanical disaggregation and enzymatic digestion. Then, we used flow cytometry coupled with specific markers to isolate endothelial cells from murine hearts. CD45+ cells were gated out to eliminate the hematopoietic cells. CD31+/Sca-1+ cells were isolated as endothelial cells. Cells isolated from atrium grew faster than those from ventricle. Cardiac endothelial cells maintain endothelial cell function such as vascular tube formation and acetylated-LDL uptake in vitro. Finally, cardiac endothelial cells formed microvessels in dorsal matrigel plug and engrafted in cardiac microvessels following intravenous and intra-arterial injections. In conclusion, our multicolor flow cytometry method is an effective method to analyze and purify endothelial cells from murine heart, which in turn can be ex vivo expanded to study the biology of endothelial cells or for clinical applications such as therapeutic angiogenesis.


Assuntos
Separação Celular/métodos , Células Endoteliais/citologia , Átrios do Coração/citologia , Microvasos/citologia , Animais , Antígenos Ly/genética , Linhagem da Célula , Células Endoteliais/metabolismo , Células Endoteliais/transplante , Citometria de Fluxo , Átrios do Coração/metabolismo , Antígenos Comuns de Leucócito/genética , Proteínas de Membrana/genética , Camundongos , Microvasos/metabolismo , Neovascularização Fisiológica/fisiologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética
19.
Biomed Res Int ; 2013: 815895, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23841093

RESUMO

Despite a pivotal role in salivary gland development, homeostasis, and disease, the role of salivary gland mesenchyme is not well understood. In this study, we used the Col1a1-GFP mouse model to characterize the salivary gland mesenchyme in vitro and in vivo. The Col1a1-GFP transgene was exclusively expressed in the salivary gland mesenchyme. Ex vivo culture of mixed salivary gland cells in DMEM plus serum medium allowed long-term expansion of salivary gland epithelial and mesenchymal cells. The role of TGF-ß1 in salivary gland development and disease is complex. Therefore, we used this in vitro culture system to study the effects of TGF-ß1 on salivary gland cell differentiation. TGF-ß1 induced the expression of collagen, and inhibited the formation of acini-like structures in close proximity to mesenchymal cells, which adapted a fibroblastic phenotype. In contrast, TGF-ßR1 inhibition increased acini genes and fibroblast growth factors (Fgf-7 and Fgf-10), decreased collagen and induced formation of larger, mature acini-like structures. Thus, inhibition of TGF-ß signaling may be beneficial for salivary gland differentiation; however, due to differential effects of TGF-ß1 in salivary gland epithelial versus mesenchymal cells, selective inhibition is desirable. In conclusion, this mixed salivary gland cell culture system can be used to study epithelial-mesenchymal interactions and the effects of differentiating inducers and inhibitors.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Glândulas Salivares/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fator 10 de Crescimento de Fibroblastos/biossíntese , Fator 7 de Crescimento de Fibroblastos/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Mesenquimais , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Glândulas Salivares/citologia , Transdução de Sinais , Fator de Crescimento Transformador beta1/antagonistas & inibidores
20.
Dent Mater J ; 31(5): 863-71, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23037852

RESUMO

This present study investigated the potential of Morinda citrifolia leaf aqueous extract to induce osteogenic differentiation and matrix mineralization of human periodontal ligament (hPDL) cells. Human periodontal ligament cells were cultured in complete medium, ascorbic acid with ß-glycerophosphate, or Morinda citrifolia leaf aqueous extract. Morinda citrifolia leaf aqueous extract significantly increased alkaline phosphatase activity compared to culturing in complete medium or ascorbic acid with ß-glycerophosphate. Matrixcontaining mineralized nodules were formed only when the cells were cultured in the presence of Morinda citrifolia leaf aqueous extract. These nodules showed positive alizarin red S staining and were rich in calcium and phosphorus according to energy dispersive X-ray analysis. In conclusion, Morinda citrifolia leaf extract promoted osteogenic differentiation and matrix mineralization in human periodontal ligament cells, a clear indication of the therapeutic potential of Morinda citrifolia leaves in bone and periodontal tissue regeneration.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Morinda , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/citologia , Extratos Vegetais/farmacologia , Folhas de Planta , Células 3T3 , Adolescente , Adulto , Fosfatase Alcalina/análise , Fosfatase Alcalina/efeitos dos fármacos , Animais , Antraquinonas , Ácido Ascórbico/farmacologia , Cálcio/análise , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Corantes , Meios de Cultura , Matriz Extracelular/efeitos dos fármacos , Glicerofosfatos/farmacologia , Humanos , Camundongos , Microscopia Eletrônica de Varredura , Osteoblastos/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Fósforo/análise , Espectrometria por Raios X , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA