Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Molecules ; 25(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906359

RESUMO

Isoflavones in soybeans are well-known phytoestrogens. Soy isoflavones present in conjugated forms are converted to aglycone forms during processing and storage. Isoflavone aglycones (IFAs) of soybeans in human diets have poor solubility in water, resulting in low bioavailability and bioactivity. Enzyme-mediated glycosylation is an efficient and environmentally friendly way to modify the physicochemical properties of soy IFAs. In this study, we determined the optimal reaction conditions for Deinococcus geothermalis amylosucrase-mediated α-1,4 glycosylation of IFA-rich soybean extract to improve the bioaccessibility of IFAs. The conversion yields of soy IFAs were in decreasing order as follows: genistein > daidzein > glycitein. An enzyme quantity of 5 U and donor:acceptor ratios of 1000:1 (glycitein) and 400:1 (daidzein and genistein) resulted in high conversion yield (average 95.7%). These optimal reaction conditions for transglycosylation can be used to obtain transglycosylated IFA-rich functional ingredients from soybeans.


Assuntos
Deinococcus/enzimologia , Glucosiltransferases/metabolismo , Glycine max/química , Isoflavonas/química , Extratos Vegetais/química , beta-Glucanas/química , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Escherichia coli/genética , Vetores Genéticos , Genisteína/química , Glucosiltransferases/genética , Glicosilação , Isoflavonas/biossíntese , Isoflavonas/isolamento & purificação , Isoflavonas/farmacocinética , Espectrometria de Massas , Fitoestrógenos/química , Extratos Vegetais/isolamento & purificação , beta-Glucanas/farmacocinética
2.
Molecules ; 25(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316426

RESUMO

Ginkgo biloba leaf (GBL) is known as a potential source of bioactive flavonoids, such as quercetin, arresting the neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-zippering. Here, the GBL flavonoids were isolated in two different manners and then examined for their bioactivity, physicochemical stability, and biocompatibility. The majority of flavonoids in the non-hydrolyzed and acidolyzed isolates, termed non-hydrolyzed isolate (NI) and acidolyzed isolate (AI) hereafter, were rich in flavonol glycosides and aglycones, respectively. Glycosidic/aglyconic quercetin and kaempferol were abundant in both NI and AI, whereas a little of apigenin, luteolin, and isorhamnetin were found in AI. NI was more thermostable in all pH ranges than quercetin, kaempferol, and AI. NI and AI both inhibited neurotransmitter release from differentiated neuronal PC-12 cells. NI and AI showed 1/2-1/3 lower EC50/CC50 values than quercetin and kaempferol. The NI and AI exhibited no toxicity assessed by the tests on chorioallantoic membranes of hen's eggs, removing toxicological concerns of irritation potential. Moreover, GBL isolates, particularly AI, showed antioxidant and anti-inflammatory activities in the use below the CC50 levels. Taken together, these results suggest that GBL isolates that are rich in antioxidant flavonoids are effective anti-neuroexocytotic agents with high stability and low toxicity.


Assuntos
Exocitose/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Ginkgo biloba/química , Neurônios/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Flavonoides/isolamento & purificação , Concentração de Íons de Hidrogênio , Camundongos , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade , Transmissão Sináptica/efeitos dos fármacos , Espectrometria de Massas em Tandem
3.
Int J Mol Sci ; 20(23)2019 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-31771257

RESUMO

Flavonols, the second most abundant flavonoids in green tea, exist mainly in the form of glycosides. Flavonols are known to have a variety of beneficial health effects; however, limited information is available on their fate in the digestive system. We investigated the digestive stability of flavonol aglycones and glycosides from green tea under simulated digestion and anaerobic human fecal fermentation. Green tea fractions rich in flavonol glycosides and aglycones, termed flavonol-glycoside-rich fraction (FLG) and flavonol-aglycone-rich fraction (FLA) hereafter, were obtained after treatment with cellulase and tannase, respectively. Kaempferol and its glycosides were found to be more stable in simulated gastric and intestinal fluids than the derivatives of quercetin and myricetin. Anaerobic human fecal fermentation with FLG and FLA increased the populations of Lactobacilli spp. and Bifidobacteria spp. and generated various organic acids, such as acetate, butyrate, propionate, and lactate, among which butyrate was produced in the highest amount. Our findings indicate that some stable polyphenols have higher bioaccessibilities in the gastrointestinal tract and that their health-modulating effects result from their interactions with microbes in the gut.


Assuntos
Fezes/microbiologia , Flavonóis/metabolismo , Chá/química , Técnicas de Cultura Celular por Lotes , Bifidobacterium/isolamento & purificação , Hidrolases de Éster Carboxílico/metabolismo , Celulase/metabolismo , Proteínas Filagrinas , Flavonoides/química , Flavonoides/metabolismo , Flavonóis/química , Glicosídeos/química , Glicosídeos/metabolismo , Humanos , Quempferóis/química , Quempferóis/metabolismo , Lactobacillus/isolamento & purificação , Quercetina/química , Quercetina/metabolismo , Chá/metabolismo
4.
Food Chem ; 374: 131493, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34802809

RESUMO

Soy isoflavones (SIs) show various health benefits, such as antioxidant and estrogenic effects. It is important to understand the bioaccessibility and bioavailability of SIs due to the close relation to their bioactivities. In this study, the antioxidant capacity, bioaccessibility, and bioavailability of 12 SIs were evaluated using radical-scavenging methods, simulations of human digestion, and Caco-2 cells in Transwell, respectively. All SIs were stable (91.1-99.2%) under gastric digestion conditions compared with the control (100%), whereas acetyl and malonyl conjugates were unstable (38.5% and 65.5%, respectively) under small intestinal digestion conditions. SI aglycones showed higher permeability (7-15 times) and cellular accumulation (8.8 times) than their glucosides. A small amount of SI conjugates was intact in the cell and in the basolateral side of each Transwell. These results suggest that SI conjugates, especially malonyl and acetyl forms, have incidental bioactivity after being metabolized to aglycones inside the cell.


Assuntos
Glycine max , Isoflavonas , Antioxidantes , Disponibilidade Biológica , Células CACO-2 , Digestão , Humanos
5.
J Agric Food Chem ; 69(20): 5764-5773, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33973775

RESUMO

Common buckwheat sprout (CBS) contains more flavone C-glycosides (FCGs) and flavonol O-glycosides (FOGs) than does common buckwheat seed. Both flavonoids in CBS are well known for providing benefits to human health. However, they are relatively less bioaccessible and more directly degradable to aglycone during digestion than are multiglycosylated flavonoids. To overcome such limitations, the water solubility and digestion stability of FCGs and FOGs were enhanced by transglycosylation using cyclodextrin glycosyltransferase. Gastric conditions had little effect on the stability of FCGs and FOGs and their enzyme-modified compounds. In contrast, under intestinal conditions, transglycosylated FCGs lost a glucose moiety and reverted to their parent compounds before transglycosylation. Under colonic fermentation using human fecal samples, the different profiles and concentrations of short-chain fatty acids were suggested to be mainly due to the presence of transglycosylated FCGs and FOGs. These findings indicate that the process of transglycosylation changes the bioaccessibility of flavonoids in CBS.


Assuntos
Fagopyrum , Digestão , Fermentação , Flavonoides , Glicosídeos , Humanos , Extratos Vegetais
6.
Antioxidants (Basel) ; 9(10)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086613

RESUMO

Previous reports on phytochemicals in green tea (GT) and processed teas mainly focused on more representative compounds such as catechins. Here, we focus on the insignificantly studied non-catechin components in tea extracts, and explore the multivariate correlation between diverse phenolic compounds in tea and the in vitro antioxidant and anticancer effects. Extracts from GT and four types of processed teas were further divided into hydrophilic and hydrophobic fractions, whose phenolic compositions and antioxidant capacities were quantified using HPLC-MS and three antioxidant assays, respectively. For three types of teas, the anticancer effects of their extracts and fractions were assessed using cancer cell lines. The hydrophobic fractions had lower antioxidant capacities than the corresponding hydrophilic fractions, but exhibited superior antiproliferative effects on cancer cells compared with the whole extract and the hydrophilic fraction. Partial least squares-discriminant analysis revealed a strong correlation between the anticancer effects and the theaflavins and flavonols. Therefore, in addition to catechins, the hydrophobic fraction of tea extracts may have beneficial health effects.

7.
J Food Sci ; 85(3): 673-681, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32078761

RESUMO

Soybeans, Glycine max (L.) Merr., are among the most important food crops worldwide. Isoflavones are major bioactive phytochemicals in soybeans, and have a variety of health benefits, including antioxidative, antiatherosclerotic, antiinflammatory, and weak estrogen-like effects. The isoflavone content and composition of soybeans vary according to the cultivar and the extraction solvent conditions. Therefore, we investigated the effects of three different solvent pHs (1.0, 5.5, and 10.0) on the isoflavone, total phenolic, and total flavonoid contents and antioxidant capacities of eight soybean cultivars developed in Korea. Twelve isoflavones in soybeans were efficiently separated and identified on a reversed-phase high-performance liquid chromatography (HPLC) system. The percentage distribution of isoflavones measured by HPLC in the eight soybean cultivars at various extraction pHs decreased as follows: malonyl isoflavones (67.2% to 81.3%) > isoflavone glucosides (16.2% to 29.0%; as nonacylated form) > acetyl isoflavones (1.6% to 5.9%). The highest contents of isoflavone glucosides, malonyl derivatives, and acetyl derivatives were extracted at solvent pHs of 10.0, 1.0, and 5.5, respectively. The solvent extraction at pH 1.0 yielded a lower total isoflavone content than those at pHs 5.5 and 10.0. However, the highest total phenolic and flavonoid contents were extracted from soybeans at pH 1.0. Soybeans extracted at pH 10.0 displayed the highest antioxidant capacities in the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical assay. Taken together, these results suggest that proper solvent pH adjustment is needed to maximize the extraction of targeted forms of isoflavones from soybeans. PRACTICAL APPLICATION: Soybeans contain a variety of bioactive compounds, including isoflavones, which function as antioxidants and weak phytoestrogens. Chemical and instrumental analyses can facilitate the selection of soybean cultivars with high amounts of isoflavones for soybean breeding and isoflavone-enriched product development. Proper solvent pH adjustment allows for the efficient extraction of high amounts of targeted isoflavone subgroups (acetyl and malonyl forms) from soybeans for functional food products.


Assuntos
Fracionamento Químico/métodos , Glycine max/química , Isoflavonas/análise , Isoflavonas/isolamento & purificação , Extratos Vegetais/análise , Extratos Vegetais/isolamento & purificação , Antioxidantes/análise , Antioxidantes/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Flavonoides/análise , Flavonoides/isolamento & purificação , Fenóis/análise , Fenóis/isolamento & purificação , República da Coreia , Sementes/química
8.
J Microbiol Biotechnol ; 30(2): 163-171, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31986558

RESUMO

Brugmansia arborea L. (Solanaceae), commonly known as "angel's trumpet," is widely grown in North America, Africa, Australia, and Asia. It has been mainly used for ornamental purposes as well as analgesic, anti-rheumatic, vulnerary, decongestant, and anti-spasmodic materials. B. arborea is also reported to show anti-cholinergic activity, for which many alkaloids were reported to be principally responsible. However, to the best of our knowledge, a phytochemical study of B. arborea flowers has not yet been performed. Four flavonol glycosides (1-4) and one dihydroflavanol (5) were for the first time isolated from B. arborea flowers in this study. The flavonoids showed significant antioxidant capacities, suppressed nitric oxide production in lipopolysaccharide (LPS)-treated RAW 264.7 cells, and reduced inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) protein production increased by LPS treatment. The contents of compounds 1-4 in n-BuOH fraction were determined to be 3.8 ± 0.9%, 2.2 ± 0.5%, 20.3 ± 1.1%, and 2.3 ± 0.4%, respectively, and that of compound 5 in EtOAc fraction was determined to be 12.7 ± 0.7%, by HPLC experiment. These results suggest that flavonol glycosides (1-4) and dihydroflavanol (5) can serve as index components of B. arborea flowers in standardizing anti-inflammatory materials.


Assuntos
Anti-Inflamatórios/farmacologia , Brugmansia/química , Flavonoides/farmacologia , Flores/química , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/química , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Ciclo-Oxigenase 2/metabolismo , Flavonoides/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais/química , Células RAW 264.7
9.
Foods ; 8(11)2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31689931

RESUMO

Buckwheat sprouts that are synthesized during the germination process are rich in flavonoids, including orientin, vitexin, rutin, and their isomers (isoorientin, isovitexin, and quercetin-3-O-robinobioside, respectively). The purpose of this study was to optimize and validate an analytical method for separating flavonoid isomers in common buckwheat sprout extract (CSE). Factors, such as range, linearity, precision, accuracy, limit of detection, and limit of quantification, were evaluated for each standard using high-performance liquid chromatography (HPLC). On the basis of resolution and symmetry, a column temperature of 40 °C with 0.1% (v/v) acidic water and acetonitrile as mobile phases, at a flow rate of 1 mL min-1 were determined to be the optimal analytical conditions. Calibration curves for orientin, isoorientin, vitexin, isovitexin, and rutin exhibited good linearity with correlation coefficients of 0.9999 over the 6.25-100.00 µg mL-1 range. Recovery values of 96.67-103.60% confirmed that the method was accurate for all flavonoids. The relative standard deviations of intra-day repeatability and inter-day reproducibility confirmed method preciseness, with values of less than 5.21% and 5.40%, respectively. The developed method was used to analyze flavonoids in CSE, with isomers satisfactorily separated and simultaneously quantified. We demonstrated that the developed HPLC method can be used to monitor flavonoids in buckwheat sprouts.

10.
Nutrients ; 11(10)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623257

RESUMO

Wheat germ is rich in quinones that exist as glycosides. In this study, we used Celluclast 1.5L to release the hydroxyquinones, which turn into benzoquinone, and prepared the water extract from enzyme-treated wheat germ (EWG). We investigated whether enzyme treatment altered the anti-inflammatory activity compared to the water extract of untreated wheat germ (UWG). UWG inhibited the production of inducible nitric oxide synthase (iNOS) and interleukin (IL)-12 and induced the production of IL-10 and heme oxygenase (HO)-1 in lipopolysaccharide (LPS)-stimulated macrophages. Enzyme treatment resulted in greater inhibition of iNOS and IL-10 and induction of HO-1 compared to UWG, possibly involving the modulation of nuclear factor (NF)-κB, activator protein 1 (AP-1) and nuclear factor erythroid 2-related factor (Nrf2). Mice fed UWG or EWG had decreased serum tumor necrosis factor (TNF)-α and increased serum IL-10 levels after intraperitoneal injection of LPS, with UWG being more effective for IL-10 and EWG more effective for TNF-α. Hepatic HO-1 gene was only expressed in mice fed EWG. We provide evidence that enzyme treatment is a useful biotechnology tool for extracting active compounds from wheat germ.


Assuntos
Anti-Inflamatórios/farmacologia , Benzoquinonas/farmacologia , Germinação , Glicosídeo Hidrolases/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Sementes/metabolismo , Solventes/química , Triticum/metabolismo , Água/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Benzoquinonas/química , Benzoquinonas/metabolismo , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Heme Oxigenase-1/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos Peritoneais/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/metabolismo , Sementes/crescimento & desenvolvimento , Transdução de Sinais , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA