Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Phys ; 50(10): 6390-6408, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36971505

RESUMO

BACKGROUND: Since human observer studies are resource-intensive, mathematical model observers are frequently used to assess task-based image quality. The most common implementation of these model observers assume that the signal information is exactly known. However, these tasks cannot thoroughly represent situations where the signal information is not exactly known in terms of size and shape. PURPOSE: Considering the limitations of the tasks for which signal information is exactly known, we proposed a convolutional neural network (CNN)-based model observer for signal known statistically (SKS) and background known statistically (BKS) detection tasks in breast tomosynthesis images. METHODS: A wide parameter search was conducted from six different acquisition angles (i.e., 10°, 20°, 30°, 40°, 50°, and 60°) within the same dose level (i.e., 2.3 mGy) under two separate acquisition schemes: (1) constant total number of projections, and (2) constant angular separation between projections. Two different types of signals: spherical (i.e., SKE tasks) and spiculated (i.e., SKS tasks) were used. The detection performance of the CNN-based model observer was compared with that of the Hotelling observer (HO) instead of the IO. Pixel-wise gradient-weighted class activation mapping (pGrad-CAM) map was extracted from each reconstructed tomosynthesis image to provide an intuitive understanding of the trained CNN-based model observer. RESULTS: The CNN-based model observer achieved a higher detection performance compared to that of the HO for all tasks. Moreover, the improvement in its detection performance was greater for SKS tasks compared to that for SKE tasks. These results demonstrated that the addition of nonlinearity improved the detection performance owing to the variation of the background and signal. Interestingly, the pGrad-CAM results effectively localized the class-specific discriminative region, further supporting the quantitative evaluation results of the CNN-based model observer. In addition, we verified that the CNN-based model observer required fewer images to achieve the detection performance of the HO. CONCLUSIONS: In this work, we proposed a CNN-based model observer for SKS and BKS detection tasks in breast tomosynthesis images. Throughout the study, we demonstrated that the detection performance of the proposed CNN-based model observer was superior to that of the HO.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Mama/diagnóstico por imagem , Modelos Teóricos , Variações Dependentes do Observador
2.
Med Phys ; 50(12): 7714-7730, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37401539

RESUMO

BACKGROUND: Limited scan angles cause severe distortions and artifacts in reconstructed tomosynthesis images when the Feldkamp-Davis-Kress (FDK) algorithm is used for the purpose, which degrades clinical diagnostic performance. These blurring artifacts are fatal in chest tomosynthesis images because precise vertebrae segmentation is crucial for various diagnostic analyses, such as early diagnosis, surgical planning, and injury detection. Moreover, because most spinal pathologies are related to vertebral conditions, the development of methods for accurate and objective vertebrae segmentation in medical images is an important and challenging research area. PURPOSE: The existing point-spread-function-(PSF)-based deblurring methods use the same PSF in all sub-volumes without considering the spatially varying property of tomosynthesis images. This increases the PSF estimation error, thus further degrading the deblurring performance. However, the proposed method estimates the PSF more accurately by using sub-CNNs that contain a deconvolution layer for each sub-system, which improves the deblurring performance. METHODS: To minimize the effect of the spatially varying property, the proposed deblurring network architecture comprises four modules: (1) block division module, (2) partial PSF module, (3) deblurring block module, and (4) assembling block module. We compared the proposed DL-based method with the FDK algorithm, total-variation iterative reconstruction with GP-BB (TV-IR), 3D U-Net, FBPConvNet, and two-phase deblurring method. To investigate the deblurring performance of the proposed method, we evaluated its vertebrae segmentation performance by comparing the pixel accuracy (PA), intersection-over-union (IoU), and F-score values of reference images to those of the deblurred images. Also, pixel-based evaluations of the reference and deblurred images were performed by comparing their root mean squared error (RMSE) and visual information fidelity (VIF) values. In addition, 2D analysis of the deblurred images were performed by artifact spread function (ASF) and full width half maximum (FWHM) of the ASF curve. RESULTS: The proposed method was able to recover the original structure significantly, thereby further improving the image quality. The proposed method yielded the best deblurring performance in terms of vertebrae segmentation and similarity. The IoU, F-score, and VIF values of the chest tomosynthesis images reconstructed using the proposed SV method were 53.5%, 28.7%, and 63.2% higher, respectively, than those of the images reconstructed using the FDK method, and the RMSE value was 80.3% lower. These quantitative results indicate that the proposed method can effectively restore both the vertebrae and the surrounding soft tissue. CONCLUSIONS: We proposed a chest tomosynthesis deblurring technique for vertebrae segmentation by considering the spatially varying property of tomosynthesis systems. The results of quantitative evaluations indicated that the vertebrae segmentation performance of the proposed method was better than those of the existing deblurring methods.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Artefatos , Coluna Vertebral/diagnóstico por imagem
3.
Med Phys ; 49(3): 1619-1634, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35028944

RESUMO

PURPOSE: The noise power spectrum (NPS) plays a key role in image quality (IQ) evaluation as it can be used for predicting detection performance or calculating detective quantum efficiency (DQE). Traditionally, the NPS is estimated by ensemble averaging multiple realizations of noise-only images. However, the estimation error increases when there are a limited number of images. Since the estimation error directly affects the image quality (IQ) index, an accurate NPS estimation method is required. Recent works have proposed NPS estimation methods using the radial one-dimensional (1D) NPS as the basis; however, when sharp kernels are used during image reconstruction, these methods cannot accurately estimate the amplitude of each angular spoke of the 2D NPS composed of different cutoff frequencies determined from the complementary projection magnification factors for different spatial regions. In this work, we propose a 2D NPS estimation method that reflects the accurate amplitude of each angular spoke for fan-beam CT images. METHODS: An angular spoke of the 2D NPS is composed of two basis functions with different cutoff frequencies determined from the complementary projection magnification factors. The proposed method estimates these two weighting factors for each basis function by minimizing the mean-squared error (MSE) between the 2D NPS estimated from 10 noise realizations. Two noise profiles and two types of apodization filters (i.e., rectangular and Hanning) were used to reconstruct the noise-only images. To examine the nonstationary noise property of fan-beam CT images, the 2D NPS was estimated at three different local regions. The estimation accuracy of the proposed method was further improved by estimating the approximate weighting factors with sinusoidal functions, considering that the weighting factors vary slowly throughout the view angles. Regression orders of 1 to 4 were used during these estimations. The approximate weighting factors were then multiplied with each of the basis functions to estimate the 2D NPS. The normalized mean-squared error (NMSE) was used as an index to compare the performance of each NPS estimation method, with the analytical 2D NPS as the reference. Further validation was performed using XCAT phantom data. RESULTS: We observed that the 2D NPS estimated using two basis functions reflected the accurate amplitude of each angular spoke, whereas the 2D NPS estimated using the radial 1D NPS as the basis could not. The 2D NPS estimated by applying the approximate weighting factors showed improved performance compared with that estimated using two basis functions. In addition, unlike the view-independent noise cases, where a lower regression order showed higher estimation performance, a higher regression order showed higher estimation performance in the view-dependent noise cases. CONCLUSIONS: In this work, we propose a 2D NPS estimation method that reflects the accurate amplitude of each angular spoke for fan-beam CT images using two basis functions. We observed that the proposed 2D NPS estimation method using two basis functions achieved better estimation performance compared with the method using the radial 1D NPS as the basis.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos
4.
PLoS One ; 17(1): e0262736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35073353

RESUMO

In digital breast tomosynthesis (DBT) systems, projection data are acquired from a limited number of angles. Consequently, the reconstructed images contain severe blurring artifacts that might heavily degrade the DBT image quality and cause difficulties in detecting lesions. In this study, we propose a two-phase learning approach for artifact compensation in a coarse-to-fine manner to mitigate blurring artifacts effectively along all viewing directions of the DBT image volume (i.e., along the axial, coronal, and sagittal planes) to improve the detection performance of lesions. The proposed method employs a convolutional neural network model comprising two submodels/phases, with Phase 1 performing three-dimensional (3D) deblurring and Phase 2 performing additional 2D deblurring. To investigate the effects of loss functions on the proposed model's deblurring performance, we evaluated several loss functions, such as the pixel-based loss function, adversarial-based loss function, and perception-based loss function. Compared with the DBT image, the mean squared error of the image and the root mean squared errors of the gradient of the image decreased by 82.8% and 44.9%, respectively, and the contrast-to-noise ratio increased by 183.4% in the in-focus plane. We verified that the proposed method sequentially restored the missing frequency components as the DBT images were processed through the Phase 1 and Phase 2 steps. These results indicate that the proposed method performs effective 3D deblurring, significantly reducing the blurring artifacts in the in-focus plane and other planes of the DBT image, thus improving the detection performance of lesions.


Assuntos
Mama/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Mamografia/métodos , Intensificação de Imagem Radiográfica/métodos , Algoritmos , Artefatos , Feminino , Humanos
5.
Phys Med Biol ; 66(16)2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34289459

RESUMO

Conventional intraoperative computed tomography (CT) has a long scan time, degrading the image quality. Its large size limits the position of a surgeon during surgery. Therefore, this study proposes a CT system comprising of eight carbon-nanotube (CNT)-based x-ray sources and 16 detector modules to solve these limitations. Gantry only requires 45° of rotation to acquire the whole projection, reducing the scan time to 1/8 compared to the full rotation. Moreover, the volume and scan time of the system can be significantly reduced using CNT sources with a small volume and short pulse width and placing a heavy and large high-voltage generator outside the gantry. We divided the proposed system into eight subsystems and sequentially devised a geometry calibration method for each subsystem. Accordingly, a calibration phantom consisting of four polytetrafluoroethylene beads, each with 15 mm diameter, was designed. The geometry calibration parameters were estimated by minimizing the difference between the measured bead projection and the forward projection of the formulated subsystem. By reflecting the estimated geometry calibration parameters, the projection data were obtained via rebinning to be used in the filtered-backprojection reconstruction. The proposed calibration and reconstruction methods were validated by computer simulations and real experiments. Additionally, the accuracy of the geometry calibration method was examined by computer simulation. Furthermore, we validated the improved quality of the reconstructed image through the mean-squared error (MSE), structure similarity (SSIM), and visual inspections for both the simulated and experimental data. The results show that the calibrated images, reconstructed by reflecting the calibration results, have smaller MSE and higher SSIM values than the uncalibrated images. The calibrated images were observed to have fewer artifacts than the uncalibrated images in visual inspection, demonstrating that the proposed calibration and reconstruction methods effectively reduce artifacts caused by geometry misalignments.


Assuntos
Nanotubos de Carbono , Algoritmos , Artefatos , Calibragem , Simulação por Computador , Processamento de Imagem Assistida por Computador , Tomografia Computadorizada Multidetectores , Imagens de Fantasmas
6.
Med Phys ; 45(12): 5385-5396, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30273955

RESUMO

PURPOSE: We evaluate the lesion detectability using human and model observer studies in single-slice and multislice cone beam computed tomography (CBCT) images with a breast anatomical background. The purposes of this work are (a) to compare human observer detectability between single-slice and multislice images for different signal sizes and noise structures, (b) to investigate the effect of different multislice viewing modes (i.e., sequential and simultaneous) on the detectability by a human observer, and (c) to predict the detectability by a human observer in single-slice and multislice images using single-slice channelized Hotelling observer (ssCHO) and multislice CHO (msCHO), respectively. METHODS: Breast anatomical background is modeled using a power law spectrum of mammograms and the lesion is modeled with a spherical signal. We conduct signal-known-exactly and background-known-statistically detection tasks on transverse and longitudinal images reconstructed using the Feldkamp-Davis-Kress algorithm with Hanning and Ram-Lak weighted ramp filters. The human observer study is conducted on three different viewing modes: single-slice, and sequential and simultaneous multislice. To predict the detectability by a human observer, we use ssCHO and msCHO with anthropomorphic channels (i.e., dense difference-of-Gaussian (D-DOG) and Gabor channels) and internal noise. RESULTS: The detectability by a human observer increases for multislice images compared to single-slice images. For multislice images, the sequential viewing mode yields higher detectability than the simultaneous viewing mode. However, the relative rank of detectability by a human observer for different signal sizes, image planes, and reconstruction filters is not much different between the viewing modes. Detectability by CHO with internal noise shows good correlation with that of the human observer for all viewing modes. CONCLUSIONS: Detectability by a human observer in CBCT images with breast anatomical background is affected by the image viewing mode, and the effect of the viewing mode depends on the signal size and noise structure. D-DOG and Gabor CHO with internal noise predict the detectability by a human observer well for both the single-slice and multislice image viewing modes.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Mama/anatomia & histologia , Mama/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador , Mama/patologia , Humanos , Variações Dependentes do Observador , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA