Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nature ; 588(7839): 642-647, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33177713

RESUMO

Gene-expression programs define shared and species-specific phenotypes, but their evolution remains largely uncharacterized beyond the transcriptome layer1. Here we report an analysis of the co-evolution of translatomes and transcriptomes using ribosome-profiling and matched RNA-sequencing data for three organs (brain, liver and testis) in five mammals (human, macaque, mouse, opossum and platypus) and a bird (chicken). Our within-species analyses reveal that translational regulation is widespread in the different organs, in particular across the spermatogenic cell types of the testis. The between-species divergence in gene expression is around 20% lower at the translatome layer than at the transcriptome layer owing to extensive buffering between the expression layers, which especially preserved old, essential and housekeeping genes. Translational upregulation specifically counterbalanced global dosage reductions during the evolution of sex chromosomes and the effects of meiotic sex-chromosome inactivation during spermatogenesis. Despite the overall prevalence of buffering, some genes evolved faster at the translatome layer-potentially indicating adaptive changes in expression; testis tissue shows the highest fraction of such genes. Further analyses incorporating mass spectrometry proteomics data establish that the co-evolution of transcriptomes and translatomes is reflected at the proteome layer. Together, our work uncovers co-evolutionary patterns and associated selective forces across the expression layers, and provides a resource for understanding their interplay in mammalian organs.


Assuntos
Evolução Molecular , Mamíferos/genética , Biossíntese de Proteínas , Transcriptoma/genética , Animais , Encéfalo/metabolismo , Galinhas/genética , Feminino , Genes Ligados ao Cromossomo X/genética , Humanos , Fígado/metabolismo , Macaca/genética , Masculino , Camundongos , Gambás/genética , Especificidade de Órgãos/genética , Ornitorrinco/genética , Biossíntese de Proteínas/genética , RNA-Seq , Ribossomos/metabolismo , Cromossomos Sexuais/genética , Especificidade da Espécie , Espermatogênese/genética , Testículo/metabolismo , Regulação para Cima
2.
Genome Res ; 30(7): 985-999, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32703885

RESUMO

Translation initiation is the major regulatory step defining the rate of protein production from an mRNA. Meanwhile, the impact of nonuniform ribosomal elongation rates is largely unknown. Using a modified ribosome profiling protocol based on footprints from two closely packed ribosomes (disomes), we have mapped ribosomal collisions transcriptome-wide in mouse liver. We uncover that the stacking of an elongating onto a paused ribosome occurs frequently and scales with translation rate, trapping ∼10% of translating ribosomes in the disome state. A distinct class of pause sites is indicative of deterministic pausing signals. Pause site association with specific amino acids, peptide motifs, and nascent polypeptide structure is suggestive of programmed pausing as a widespread mechanism associated with protein folding. Evolutionary conservation at disome sites indicates functional relevance of translational pausing. Collectively, our disome profiling approach allows unique insights into gene regulation occurring at the step of translation elongation.


Assuntos
Elongação Traducional da Cadeia Peptídica , Ribossomos/metabolismo , Transcriptoma , Aminoácidos , Animais , Códon , Uso do Códon , Evolução Molecular , Camundongos , Peptídeos/química , Biossíntese de Proteínas , Sinais Direcionadores de Proteínas , Estrutura Secundária de Proteína , Análise de Sequência de RNA
3.
J Biol Chem ; 295(18): 6007-6022, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32201384

RESUMO

Prominins (proms) are transmembrane glycoproteins conserved throughout the animal kingdom. They are associated with plasma membrane protrusions, such as primary cilia, as well as extracellular vesicles derived thereof. Primary cilia host numerous signaling pathways affected in diseases known as ciliopathies. Human PROM1 (CD133) is detected in both somatic and cancer stem cells and is also expressed in terminally differentiated epithelial and photoreceptor cells. Genetic mutations in the PROM1 gene result in retinal degeneration by impairing the proper formation of the outer segment of photoreceptors, a modified cilium. Here, we investigated the impact of proms on two distinct examples of ciliogenesis. First, we demonstrate that the overexpression of a dominant-negative mutant variant of human PROM1 (i.e. mutation Y819F/Y828F) significantly decreases ciliary length in Madin-Darby canine kidney cells. These results contrast strongly to the previously observed enhancing effect of WT PROM1 on ciliary length. Mechanistically, the mutation impeded the interaction of PROM1 with ADP-ribosylation factor-like protein 13B, a key regulator of ciliary length. Second, we observed that in vivo knockdown of prom3 in zebrafish alters the number and length of monocilia in the Kupffer's vesicle, resulting in molecular and anatomical defects in the left-right asymmetry. These distinct loss-of-function approaches in two biological systems reveal that prom proteins are critical for the integrity and function of cilia. Our data provide new insights into ciliogenesis and might be of particular interest for investigations of the etiologies of ciliopathies.


Assuntos
Antígeno AC133/metabolismo , Cílios/metabolismo , Peixe-Zebra , Antígeno AC133/química , Antígeno AC133/genética , Animais , Cães , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Espaço Intracelular/metabolismo , Células de Kupffer/citologia , Células Madin Darby de Rim Canino , Mutação , Transporte Proteico , Tirosina
4.
Genome Res ; 25(12): 1848-59, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26486724

RESUMO

Mammalian gene expression displays widespread circadian oscillations. Rhythmic transcription underlies the core clock mechanism, but it cannot explain numerous observations made at the level of protein rhythmicity. We have used ribosome profiling in mouse liver to measure the translation of mRNAs into protein around the clock and at high temporal and nucleotide resolution. We discovered, transcriptome-wide, extensive rhythms in ribosome occupancy and identified a core set of approximately 150 mRNAs subject to particularly robust daily changes in translation efficiency. Cycling proteins produced from nonoscillating transcripts revealed thus-far-unknown rhythmic regulation associated with specific pathways (notably in iron metabolism, through the rhythmic translation of transcripts containing iron responsive elements), and indicated feedback to the rhythmic transcriptome through novel rhythmic transcription factors. Moreover, estimates of relative levels of core clock protein biosynthesis that we deduced from the data explained known features of the circadian clock better than did mRNA expression alone. Finally, we identified uORF translation as a novel regulatory mechanism within the clock circuitry. Consistent with the occurrence of translated uORFs in several core clock transcripts, loss-of-function of Denr, a known regulator of reinitiation after uORF usage and of ribosome recycling, led to circadian period shortening in cells. In summary, our data offer a framework for understanding the dynamics of translational regulation, circadian gene expression, and metabolic control in a solid mammalian organ.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Perfilação da Expressão Gênica , Fígado/metabolismo , Fases de Leitura Aberta , Ribossomos/genética , Ribossomos/metabolismo , Transcriptoma , Regiões 5' não Traduzidas , Animais , Biomarcadores , Biologia Computacional/métodos , Regulação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta
5.
Stem Cells ; 35(4): 1015-1027, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27862634

RESUMO

Pw1/Peg3 is a parentally imprinted gene expressed in adult stem cells in every tissue thus far examined including the stem cells of the hair follicle. Using a Pw1/Peg3 reporter mouse, we carried out a detailed dissection of the stem cells in the bulge, which is a major stem cell compartment of the hair follicle in mammalian skin. We observed that PW1/Peg3 expression initiates upon placode formation during fetal development, coincident with the establishment of the bulge stem cells. In the adult, we observed that PW1/Peg3 expression is found in both CD34+ and CD34- populations of bulge stem cells. We demonstrate that both populations can give rise to new hair follicles, reconstitute their niche, and self-renew. These results demonstrate that PW1/Peg3 is a reliable marker of the full population of follicle stem cells and reveal a novel CD34- bulge stem-cell population. Stem Cells 2017;35:1015-1027.


Assuntos
Antígenos CD34/metabolismo , Folículo Piloso/citologia , Fatores de Transcrição Kruppel-Like/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Autorrenovação Celular , Separação Celular , Expressão Gênica , Genes Reporter , Camundongos Endogâmicos C57BL , Coloração e Rotulagem , Nicho de Células-Tronco
6.
Nature ; 480(7376): 209-14, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22080954

RESUMO

Murine epidermal stem cells undergo alternate cycles of dormancy and activation, fuelling tissue renewal. However, only a subset of stem cells becomes active during each round of morphogenesis, indicating that stem cells coexist in heterogeneous responsive states. Using a circadian-clock reporter-mouse model, here we show that the dormant hair-follicle stem cell niche contains coexisting populations of cells at opposite phases of the clock, which are differentially predisposed to respond to homeostatic cues. The core clock protein Bmal1 modulates the expression of stem cell regulatory genes in an oscillatory manner, to create populations that are either predisposed, or less prone, to activation. Disrupting this clock equilibrium, through deletion of Bmal1 (also known as Arntl) or Per1/2, resulted in a progressive accumulation or depletion of dormant stem cells, respectively. Stem cell arrhythmia also led to premature epidermal ageing, and a reduction in the development of squamous tumours. Our results indicate that the circadian clock fine-tunes the temporal behaviour of epidermal stem cells, and that its perturbation affects homeostasis and the predisposition to tumorigenesis.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Folículo Piloso/citologia , Células-Tronco/citologia , Fatores de Transcrição ARNTL/deficiência , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Adesão Celular/genética , Ciclo Celular/genética , Células Cultivadas , Senescência Celular , Relógios Circadianos/genética , Ritmo Circadiano/genética , Sinais (Psicologia) , Feminino , Regulação da Expressão Gênica/genética , Homeostase/genética , Homeostase/fisiologia , Masculino , Camundongos , Camundongos Knockout , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Nicho de Células-Tronco , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta/genética , Via de Sinalização Wnt/genética
7.
Prostate ; 71(3): 254-67, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20717901

RESUMO

BACKGROUND: Rodent and human prominin-1 are expressed in numerous adult epithelia and somatic stem cells. A report has shown that human PROMININ-1 carrying the AC133 epitope can be used to identify rare prostate basal stem cells (Richardson et al., J Cell Sci 2004; 117:3539­3545). Here we re-investigated its general expression in male reproductive tract including mouse and human prostate and in prostate cancer samples using various anti-prominin-1 antibodies. METHODS: The expression was monitored by immunohistochemistry and blotting. Murine tissues were stained with 13A4 monoclonal antibody (mAb) whereas human samples were examined either with the AC133 mAb recognizing the AC133 glycosylation-dependent epitope or 80B258 mAb directed against the PROMININ-1 polypeptide. RESULTS: Mouse prominin-1 was detected at the apical domain of epithelial cells of ductus deferens, seminal vesicles, ampullary glands, and all prostatic lobes. In human prostate, immunoreactivity for 80B258, but not AC133 was revealed at the apical side of some epithelial (luminal) cells, in addition to the minute population of AC133/80B258-positive cells found in basal compartment. Examination of prostate adenocarcinoma revealed the absence of 80B258 immunoreactivity in the tumor regions. However, it was found to be up-regulated in luminal cells in the vicinity of the cancer areas. CONCLUSIONS: Mouse prominin-1 is widely expressed in prostate whereas in human only some luminal cells express it, demonstrating nevertheless that its expression is not solely associated with basal stem cells. In pathological samples, our pilot evaluation shows that PROMININ-1 is down-regulated in the cancer tissues and up-regulated in inflammatory regions.


Assuntos
Antígenos CD/análise , Glicoproteínas/análise , Peptídeos/análise , Próstata/química , Células-Tronco/química , Antígeno AC133 , Idoso , Animais , Antígenos CD/genética , Células CACO-2 , Glicoproteínas/genética , Humanos , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Peptídeos/genética , Próstata/citologia , Neoplasias da Próstata/química
8.
Elife ; 102021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34542406

RESUMO

Circular RNAs (circRNAs) are found across eukaryotes and can function in post-transcriptional gene regulation. Their biogenesis through a circle-forming backsplicing reaction is facilitated by reverse-complementary repetitive sequences promoting pre-mRNA folding. Orthologous genes from which circRNAs arise, overall contain more strongly conserved splice sites and exons than other genes, yet it remains unclear to what extent this conservation reflects purifying selection acting on the circRNAs themselves. Our analyses of circRNA repertoires from five species representing three mammalian lineages (marsupials, eutherians: rodents, primates) reveal that surprisingly few circRNAs arise from orthologous exonic loci across all species. Even the circRNAs from orthologous loci are associated with young, recently active and species-specific transposable elements, rather than with common, ancient transposon integration events. These observations suggest that many circRNAs emerged convergently during evolution - as a byproduct of splicing in orthologs prone to transposon insertion. Overall, our findings argue against widespread functional circRNA conservation.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , RNA Circular/genética , Animais , Bases de Dados Genéticas , Regulação da Expressão Gênica , Loci Gênicos , Humanos , Splicing de RNA , RNA Circular/metabolismo , Especificidade da Espécie
9.
Histochem Cell Biol ; 133(5): 527-39, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20333396

RESUMO

Prominin-1 (CD133) and its paralogue, prominin-2, are pentaspan membrane glycoproteins that are strongly expressed in the kidney where they have been originally cloned from. Previously, we have described the localization of prominin-1 in proximal tubules of the nephron. The spatial distribution of prominin-2, however, has not yet been documented in the kidney. We therefore examined the expression of this molecule along distinct tubular segments of the human and murine nephron using in situ hybridization and immunohistochemistry. Our findings indicated that human prominin-2 transcripts and protein were confined to distal tubules of the nephron including the thick ascending limb of Henle's loop and the distal convoluted tubule, the connecting duct and to the collecting duct system. Therein, this glycoprotein was enriched at the basolateral plasma membrane of the tubular epithelial cells with exception of the thick ascending limb where it was also found in the apical domain. This is in contrast with the exclusive apical localization of prominin-1 in epithelial cells of proximal nephron tubules. The distribution of murine prominin-2 transcripts was reminiscent of its human orthologue. In addition, a marked enrichment in the epithelium covering the papilla and in the urothelium of the renal pelvis was noted in mice. Finally, our biochemical analysis revealed that prominin-2 was released into the clinically healthy human urine as a constituent of small membrane vesicles. Collectively our data show the distribution and subcellular localization of prominin-2 within the kidney in situ and its release into the urine. Urinary detection of this protein might offer novel diagnostic approaches for studying renal diseases affecting distal segments of the nephron.


Assuntos
Túbulos Renais Coletores/metabolismo , Túbulos Renais Distais/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Antígeno AC133 , Animais , Antígenos CD/urina , Aquaporina 2/metabolismo , Calbindinas , Células Epiteliais/metabolismo , Expressão Gênica/genética , Glicoproteínas/urina , Humanos , Córtex Renal/crescimento & desenvolvimento , Córtex Renal/metabolismo , Medula Renal/crescimento & desenvolvimento , Medula Renal/metabolismo , Pelve Renal/crescimento & desenvolvimento , Pelve Renal/metabolismo , Glicoproteínas de Membrana/urina , Camundongos , Camundongos Endogâmicos , Mucoproteínas/metabolismo , Néfrons/metabolismo , Peptídeos/urina , Receptores de Droga/metabolismo , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto , Membro 3 da Família 12 de Carreador de Soluto , Simportadores/metabolismo , Uromodulina , Urotélio/crescimento & desenvolvimento , Urotélio/metabolismo
10.
Cytotherapy ; 12(2): 131-42, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20196693

RESUMO

BACKGROUND AIMS: It is unclear whether the plastic-adherent multipotent mesenchymal stromal cells (MSC) isolated from human bone marrow (BM) represent a uniform cell population or are heterogeneous in terms of cell-surface constituents and hence functionality. METHODS: We investigated the expression profile of certain biofunctional lipids by plastic-adherent MSC, focusing particularly on two membrane microdomain (lipid raft)-associated monosialogangliosides, GM1 and GM3, using indirect confocal laser scanning fluorescence microscopy and flow cytometry. RESULTS: Phenotypically, we observed a differential expression where certain MSC subsets exhibited GM1, GM3 or both at the plasma membrane. Furthermore, disialoganglioside GD2 detection increased the complexity of the expression patterns, giving rise to seven identifiable cell phenotypes. Variation of standard culture conditions, such as the number of cell passage and period in culture, as well as donors, did not influence the heterologous ganglioside expression profile. In contrast, the binding of various lectins appeared homogeneous throughout the MSC population, indicating that the general glycosylation pattern remained common. Morphologically, the expression of a given ganglioside-based phenotype was not related to a cell with particular size or shape. Interestingly, a segregation of GM1 and GM3 clusters was observed, GM3 being mostly excluded from the highly curved plasma membrane protrusions. CONCLUSIONS: These data highlight the phenotypic heterogeneity of plastic-adherent MSC in terms of certain lipid constituents of the plasma membrane, and the presence and/or absence of distinct ganglioside-based membrane microdomains suggest their potential functional diversity.


Assuntos
Gangliosídeo G(M1)/metabolismo , Gangliosídeo G(M3)/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Plásticos/farmacologia , Células Estromais/citologia , Adulto , Animais , Biomarcadores/metabolismo , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Feminino , Humanos , Lectinas/metabolismo , Masculino , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/ultraestrutura , Camundongos , Células-Tronco Multipotentes/efeitos dos fármacos , Células-Tronco Multipotentes/ultraestrutura , Fenótipo , Ligação Proteica/efeitos dos fármacos , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
11.
Stem Cells ; 26(3): 698-705, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18096722

RESUMO

Cerebrospinal fluid (CSF) is routinely used for diagnosing and monitoring neurological diseases. The CSF proteins used so far for diagnostic purposes (except for those associated with whole cells) are soluble. Here, we show that human CSF contains specific membrane particles that carry prominin-1/CD133, a neural stem cell marker implicated in brain tumors, notably glioblastoma. Differential and equilibrium centrifugation and detergent solubility analyses showed that these membrane particles were similar in physical properties and microdomain organization to small membrane vesicles previously shown to be released from neural stem cells in the mouse embryo. The levels of membrane particle-associated prominin-1/CD133 declined during childhood and remained constant thereafter, with a remarkably narrow range in healthy adults. Glioblastoma patients showed elevated levels of membrane particle-associated prominin-1/CD133, which decreased dramatically in the final stage of the disease. Hence, analysis of CSF for membrane particles carrying the somatic stem cell marker prominin-1/CD133 offers a novel approach for studying human central nervous system disease.


Assuntos
Antígenos CD/líquido cefalorraquidiano , Doenças do Sistema Nervoso Central/líquido cefalorraquidiano , Glicoproteínas/líquido cefalorraquidiano , Peptídeos/líquido cefalorraquidiano , Células-Tronco/metabolismo , Antígeno AC133 , Biomarcadores/metabolismo , Células CACO-2 , Glioblastoma/líquido cefalorraquidiano , Humanos , Padrões de Referência , Fatores de Tempo
12.
J Histochem Cytochem ; 56(11): 977-93, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18645205

RESUMO

Human prominin-1 (CD133) is expressed by various stem and progenitor cells originating from diverse sources. In addition to stem cells, its mouse ortholog is expressed in a broad range of adult epithelial cells, where it is selectively concentrated in their apical domain. The lack of detection of prominin-1 in adult human epithelia might be explained, at least in part, by the specificity of the widely used AC133 antibody, which recognizes an epitope that seems dependent on glycosylation. Here we decided to re-examine its expression in adult human tissues, particularly in glandular epithelia, using a novel monoclonal antibody (80B258) generated against the human prominin-1 polypeptide. In examined tissues, we observed 80B258 immunoreactivity at the apical or apicolateral membranes of polarized cells. For instance, we found expression in secretory serous and mucous cells as well as intercalated ducts of the large salivary and lacrimal glands. In sweat glands including the gland of Moll, 80B258 immunoreactivity was found in the secretory (eccrine and apocrine glands) and duct (eccrine glands) portion. In the liver, 80B258 immunoreactivity was identified in the canals of Hering, bile ductules, and small interlobular bile ducts. In the uterus, we detected 80B258 immunoreactivity in endometrial and cervical glands. Together these data show that the overall expression of human prominin-1 is beyond the rare primitive cells, and it seems to be a general marker of apical or apicolateral membrane of glandular epithelia. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.


Assuntos
Antígenos CD/biossíntese , Glândulas Exócrinas/metabolismo , Glicoproteínas/biossíntese , Fígado/metabolismo , Pâncreas/metabolismo , Útero/metabolismo , Antígeno AC133 , Animais , Anticorpos Monoclonais , Antígenos CD/imunologia , Células CHO , Células CACO-2 , Cricetinae , Cricetulus , Epitélio/metabolismo , Feminino , Citometria de Fluxo , Glicoproteínas/imunologia , Humanos , Imuno-Histoquímica , Microscopia Confocal , Especificidade de Órgãos , Peptídeos/imunologia
13.
FEBS Lett ; 581(9): 1783-7, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17428477

RESUMO

The apical domain of epithelial cells is composed of distinct subdomains such as microvilli, primary cilia and a non-protruding region. Using the cholesterol-binding protein prominin-1 as a specific marker of plasma membrane protrusions we have previously proposed the co-existence of different cholesterol-based lipid microdomains (lipid rafts) within the apical domain [Röper, K., Corbeil, D. and Huttner, W.B. (2000), Retention of prominin in microvilli reveals distinct cholesterol-based lipid microdomains in the apical plasma membrane. Nat. Cell Biol. 2, 582-592]. To substantiate the hypothesis that the microvillar plasma membrane subdomains contain a distinct set of lipids compared to the planar portion we have investigated the distribution of prominin-1 and two raft-associated gangliosides GM(1) and GM(3) by fluorescence microscopy. GM(1) was found to co-localize with prominin-1 on microvilli whereas GM(3) was segregated from there suggesting its localization in the planar region. Regarding the primary cilium, overlapping fluorescent signals of GM(1) or GM(3) and prominin-1 were observed. Thus, our data demonstrate that specific ganglioside-enriched rafts are found in different apical subdomains and reveal that two plasma membrane protrusions with different structural bases (actin for the microvillus and tubulin for the cilium) are composed of distinct types of lipid.


Assuntos
Células Epiteliais/química , Gangliosídeo G(M1)/fisiologia , Gangliosídeo G(M3)/fisiologia , Microdomínios da Membrana/química , Animais , Células Cultivadas , Cílios/química , Cães , Gangliosídeo G(M1)/metabolismo , Gangliosídeo G(M3)/metabolismo , Microvilosidades/química , Modelos Biológicos , Distribuição Tecidual
14.
Genome Biol ; 18(1): 116, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28622766

RESUMO

BACKGROUND: The daily gene expression oscillations that underlie mammalian circadian rhythms show striking differences between tissues and involve post-transcriptional regulation. Both aspects remain poorly understood. We have used ribosome profiling to explore the contribution of translation efficiency to temporal gene expression in kidney and contrasted our findings with liver data available from the same mice. RESULTS: Rhythmic translation of constantly abundant messenger RNAs (mRNAs) affects largely non-overlapping transcript sets with distinct phase clustering in the two organs. Moreover, tissue differences in translation efficiency modulate the timing and amount of protein biosynthesis from rhythmic mRNAs, consistent with organ specificity in clock output gene repertoires and rhythmicity parameters. Our comprehensive datasets provided insights into translational control beyond temporal regulation. Between tissues, many transcripts show differences in translation efficiency, which are, however, of markedly smaller scale than mRNA abundance differences. Tissue-specific changes in translation efficiency are associated with specific transcript features and, intriguingly, globally counteracted and compensated transcript abundance variations, leading to higher similarity at the level of protein biosynthesis between both tissues. CONCLUSIONS: We show that tissue specificity in rhythmic gene expression extends to the translatome and contributes to define the identities, the phases and the expression levels of rhythmic protein biosynthesis. Moreover, translational compensation of transcript abundance divergence leads to overall higher similarity at the level of protein production across organs. The unique resources provided through our study will serve to address fundamental questions of post-transcriptional control and differential gene expression in vivo.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Biossíntese de Proteínas , Transcriptoma/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Rim/metabolismo , Fígado/metabolismo , Camundongos , RNA Mensageiro/genética , Ribossomos/genética
15.
Genom Data ; 8: 41-4, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27114907

RESUMO

Mammalian physiology and behavior follow daily rhythms that are orchestrated by endogenous timekeepers known as circadian clocks. Rhythms in transcription are considered the main mechanism to engender rhythmic gene expression, but important roles for posttranscriptional mechanisms have recently emerged as well (reviewed in Lim and Allada (2013) [1]). We have recently reported on the use of ribosome profiling (RPF-seq), a method based on the high-throughput sequencing of ribosome protected mRNA fragments, to explore the temporal regulation of translation efficiency (Janich et al., 2015 [2]). Through the comparison of around-the-clock RPF-seq and matching RNA-seq data we were able to identify 150 genes, involved in ribosome biogenesis, iron metabolism and other pathways, whose rhythmicity is generated entirely at the level of protein synthesis. The temporal transcriptome and translatome data sets from this study have been deposited in NCBI's Gene Expression Omnibus under the accession number GSE67305. Here we provide additional information on the experimental setup and on important optimization steps pertaining to the ribosome profiling technique in mouse liver and to data analysis.

16.
Curr Opin Cell Biol ; 31: 8-15, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25016176

RESUMO

The circadian timekeeping mechanism adapts physiology to the 24-hour light/dark cycle. However, how the outputs of the circadian clock in different peripheral tissues communicate and synchronize each other is still not fully understood. The circadian clock has been implicated in the regulation of numerous processes, including metabolism, the cell cycle, cell differentiation, immune responses, redox homeostasis, and tissue repair. Accordingly, perturbation of the machinery that generates circadian rhythms is associated with metabolic disorders, premature ageing, and various diseases including cancer. Importantly, it is now possible to target circadian rhythms through systemic or local delivery of time cues or compounds. Here, we summarize recent findings in peripheral tissues that link the circadian clock machinery to tissue-specific functions and diseases.


Assuntos
Células-Tronco Adultas/fisiologia , Relógios Circadianos , Ritmo Circadiano , Homeostase , Células-Tronco Adultas/citologia , Animais , Ciclo Celular , Diferenciação Celular , Humanos , Especificidade de Órgãos , Núcleo Supraquiasmático/fisiologia
17.
PLoS One ; 9(6): e98927, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24911657

RESUMO

Prominin-1 (CD133) is physiologically expressed at the apical membranes of secretory (serous and mucous) and duct cells of major salivary glands. We investigated its expression in various human salivary gland lesions using two distinct anti-prominin-1 monoclonal antibodies (80B258 and AC133) applied on paraffin-embedded sections and characterized its occurrence in saliva. The 80B258 epitope was extensively expressed in adenoid cystic carcinoma, in lesser extent in acinic cell carcinoma and pleomorphic adenoma, and rarely in mucoepidermoid carcinoma. The 80B258 immunoreactivity was predominately detected at the apical membrane of tumor cells showing acinar or intercalated duct cell differentiation, which lined duct- or cyst-like structures, and in luminal secretions. It was observed on the whole cell membrane in non-luminal structures present in the vicinity of thin-walled blood vessels and hemorrhagic areas in adenoid cystic carcinoma. Of note, AC133 labeled only a subset of 80B258-positive structures. In peritumoral salivary gland tissues as well as in obstructive sialadenitis, an up-regulation of prominin-1 (both 80B258 and AC133 immunoreactivities) was observed in intercalated duct cells. In most tissues, prominin-1 was partially co-expressed with two cancer markers: carcinoembryonic antigen (CEA) and mucin-1 (MUC1). Differential centrifugation of saliva followed by immunoblotting indicated that all three markers were released in association with small membrane vesicles. Immuno-isolated prominin-1-positive vesicles contained CEA and MUC1, but also exosome-related proteins CD63, flotillin-1, flotillin-2 and the adaptor protein syntenin-1. The latter protein was shown to interact with prominin-1 as demonstrated by its co-immunoisolation. A fraction of saliva-associated prominin-1 appeared to be ubiquitinated. Collectively, our findings bring new insights into the biochemistry and trafficking of prominin-1 as well as its immunohistochemical profile in certain types of salivary gland tumors and inflammatory diseases.


Assuntos
Antígenos CD/metabolismo , Glicoproteínas/metabolismo , Peptídeos/metabolismo , Saliva/metabolismo , Neoplasias das Glândulas Salivares/metabolismo , Sialadenite/metabolismo , Ubiquitinação , Antígeno AC133 , Antígeno Carcinoembrionário/metabolismo , Membrana Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Mucina-1/metabolismo , Gradação de Tumores , Neoplasias das Glândulas Salivares/patologia , Sialadenite/patologia , Sinteninas/metabolismo
18.
Cell Stem Cell ; 13(6): 745-53, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24120744

RESUMO

Human skin copes with harmful environmental factors that are circadian in nature, yet how circadian rhythms modulate the function of human epidermal stem cells is mostly unknown. Here we show that in human epidermal stem cells and their differentiated counterparts, core clock genes peak in a successive and phased manner, establishing distinct temporal intervals during the 24 hr day period. Each of these successive clock waves is associated with a peak in the expression of subsets of transcripts that temporally segregate the predisposition of epidermal stem cells to respond to cues that regulate their proliferation or differentiation, such as TGFß and calcium. Accordingly, circadian arrhythmia profoundly affects stem cell function in culture and in vivo. We hypothesize that this intricate mechanism ensures homeostasis by providing epidermal stem cells with environmentally relevant temporal functional cues during the course of the day and that its perturbation may contribute to aging and carcinogenesis.


Assuntos
Ritmo Circadiano/fisiologia , Células Epidérmicas , Células-Tronco/citologia , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ritmo Circadiano/efeitos dos fármacos , Humanos , Recém-Nascido , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta/farmacologia
19.
Nat Cell Biol ; 15(8): 978-90, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23770676

RESUMO

Oncogene-induced senescence (OIS) is crucial for tumour suppression. Senescent cells implement a complex pro-inflammatory response termed the senescence-associated secretory phenotype (SASP). The SASP reinforces senescence, activates immune surveillance and paradoxically also has pro-tumorigenic properties. Here, we present evidence that the SASP can also induce paracrine senescence in normal cells both in culture and in human and mouse models of OIS in vivo. Coupling quantitative proteomics with small-molecule screens, we identified multiple SASP components mediating paracrine senescence, including TGF-ß family ligands, VEGF, CCL2 and CCL20. Amongst them, TGF-ß ligands play a major role by regulating p15(INK4b) and p21(CIP1). Expression of the SASP is controlled by inflammasome-mediated IL-1 signalling. The inflammasome and IL-1 signalling are activated in senescent cells and IL-1α expression can reproduce SASP activation, resulting in senescence. Our results demonstrate that the SASP can cause paracrine senescence and impact on tumour suppression and senescence in vivo.


Assuntos
Senescência Celular/fisiologia , Inflamassomos/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/fisiopatologia , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Interleucina-1/metabolismo , Camundongos , Modelos Animais , Comunicação Parácrina/fisiologia , Ligação Proteica , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo
20.
Mol Cell Biol ; 32(8): 1442-52, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22331466

RESUMO

One of the most striking epigenetic alterations that occurs at the level of the nucleosome is the complete exchange of the canonical H2A histones for the macroH2A variant. Here, we provide insight into the poorly recognized function of macroH2A in transcriptional activation and demonstrate its relevance in embryonic and adult stem cells. Knockdown of macroH2A1 in mouse embryonic stem (mES) cells limited their capacity to differentiate but not their self-renewal. The loss of macroH2A1 interfered with the proper activation of differentiation genes, most of which are direct target genes of macroH2A. Additionally, macroH2A1-deficient mES cells displayed incomplete inactivation of pluripotency genes and formed defective embryoid bodies. In vivo, macroH2A1-deficient teratomas contained a massive expansion of malignant, undifferentiated carcinoma tissue. In the heterogeneous culture of primary human keratinocytes, macroH2A1 levels negatively correlated with the self-renewal capacity of the pluripotent compartment. Together these results establish macroH2A1 as a critical chromatin component that regulates the delicate balance between self-renewal and differentiation of embryonic and adult stem cells.


Assuntos
Células-Tronco Adultas/citologia , Diferenciação Celular/fisiologia , Proliferação de Células , Células-Tronco Embrionárias/citologia , Histonas/fisiologia , Células-Tronco Adultas/fisiologia , Animais , Cromatina/fisiologia , Corpos Embrioides/metabolismo , Corpos Embrioides/patologia , Células-Tronco Embrionárias/fisiologia , Humanos , Queratinócitos/citologia , Queratinócitos/fisiologia , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Teratoma/metabolismo , Teratoma/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA