Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Molecules ; 27(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897915

RESUMO

COVID-19, caused by the coronavirus SARS-CoV-2, emerged in late December 2019 in Wuhan, China. As of 8 April 2022, the virus has caused a global pandemic, resulting in 494,587,638 infections leading to 6,170,283 deaths around the world. Although several vaccines have received emergency authorization from USA and UK drug authorities and two more in Russia and China, it is too early to comment on the prolonged effectiveness of the vaccines, their availability, and affordability for the developing countries of the world, and the daunting task to vaccinate 7 billion people of the world with two doses of the vaccine with additional booster doses. As a result, it is still worthwhile to search for drugs and several promising leads have been found, mainly through in silico studies. In this study, we have examined the binding energies of several alkaloids and anthocyanin derivatives from the Solanaceae family, a family which contains common consumable vegetables and fruit items such as eggplant, pepper, and tomatoes. Our study demonstrates that Solanaceae family alkaloids such as incanumine and solaradixine, as well as anthocyanins and anthocyanidins, have very high predicted binding energies for the 3C-like protease of SARS-CoV-2 (also known as Mpro). Since Mpro is vital for SARS-CoV-2 replication, the compounds merit potential for further antiviral research towards the objective of obtaining affordable drugs.


Assuntos
Alcaloides , Tratamento Farmacológico da COVID-19 , Solanaceae , Alcaloides/farmacologia , Antocianinas , Antivirais/química , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeo Hidrolases/metabolismo , Compostos Fitoquímicos/farmacologia , Inibidores de Proteases/química , SARS-CoV-2 , Solanaceae/metabolismo , Verduras/metabolismo , Proteínas não Estruturais Virais/metabolismo
2.
Molecules ; 27(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35056809

RESUMO

The focus of this roadmap is to evaluate the possible efficacy of Artemisia herba-alba Asso. (Asteraceae) for the treatment of COVID-19 and some of its symptoms and several comorbidities using a combination of in silico (molecular docking) studies, reported ethnic uses, and pharmacological activity studies of this plant. In this exploratory study, we show that various phytochemicals from Artemisia herba-alba can be useful against COVID-19 (in silico studies) and for its associated comorbidities. COVID-19 is a new disease, so reports of any therapeutic treatments against it (traditional or conventional) are scanty. On the other hand, we demonstrate, using Artemisia herba-alba as an example, that through a proper search and identification of medicinal plant(s) and their phytochemicals identification using secondary data (published reports) on the plant's ethnic uses, phytochemical constituents, and pharmacological activities against COVID-19 comorbidities and symptoms coupled with the use of primary data obtained from in silico (molecular docking and molecular dynamics) studies on the binding of the selected plant's phytochemicals (such as: rutin, 4,5-di-O-caffeoylquinic acid, and schaftoside) with various vital components of SARS-CoV-2, it may be possible to rapidly identify plants that are suitable for further research regarding therapeutic use against COVID-19 and its associated symptoms and comorbidities.


Assuntos
Artemisia/química , Tratamento Farmacológico da COVID-19 , Extratos Vegetais/química , Extratos Vegetais/farmacologia , COVID-19/epidemiologia , Comorbidade , Proteases 3C de Coronavírus/química , Etnobotânica/métodos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/química , Plantas Medicinais/química
3.
Pharm Biol ; 60(1): 2049-2087, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36305538

RESUMO

CONTEXT: The emergence of zoonotic viruses in the last decades culminating with COVID-19 and challenges posed by the resistance of RNA viruses to antiviral drugs requires the development of new antiviral drugs. OBJECTIVE: This review identifies natural products isolated from Asian and Pacific medicinal plants with in vitro and in vivo antiviral activity towards RNA viruses and analyses their distribution, molecular weights, solubility and modes of action. MATERIALS AND METHODS: All data in this review was compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem and library search from 1961 to 2022. RESULTS: Out of about 350 molecules identified, 43 phenolics, 31 alkaloids, and 28 terpenes were very strongly active against at least one type of RNA virus. These natural products are mainly planar and amphiphilic, with a molecular mass between 200 and 400 g/mol and target viral genome replication. Hydroxytyrosol, silvestrol, lycorine, tylophorine and 12-O-tetradecanoylphorbol 13-acetate with IC50 below 0.01 µg/mL and selectivity index (S.I.) above 100 have the potential to be used for the development of anti-RNA virus leads. DISCUSSION AND CONCLUSIONS: The medicinal plants of Asia and the Pacific are a rich source of natural products with the potential to be developed as lead for the treatment of RNA viral infections.


Assuntos
Produtos Biológicos , COVID-19 , Plantas Medicinais , Vírus de RNA , Produtos Biológicos/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico
4.
Redox Biol ; 71: 103105, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471283

RESUMO

Cognitive dysfunction can occur both in normal aging and age-related neurological disorders, such as mild cognitive impairment and Alzheimer's disease (AD). These disorders have few treatment options due to side effects and limited efficacy. New approaches to slow cognitive decline are urgently needed. Dietary interventions (nutraceuticals) have received considerable attention because they exhibit strong neuroprotective properties and may help prevent or minimize AD symptoms. Biological aging is driven by a series of interrelated mechanisms, including oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy, which function through various signaling pathways. Recent clinical and preclinical studies have shown that dietary small molecules derived from natural sources, including flavonoids, carotenoids, and polyphenolic acids, can modulate oxidative damage, cognitive impairments, mitochondrial dysfunction, neuroinflammation, neuronal apoptosis, autophagy dysregulation, and gut microbiota dysbiosis. This paper reviews research on different dietary small molecules and their bioactive constituents in the treatment of AD. Additionally, the chemical structure, effective dose, and specific molecular mechanisms of action are comprehensively explored. This paper also discusses the advantages of using nanotechnology-based drug delivery, which significantly enhances oral bioavailability, safety, and therapeutic effect, and lowers the risk of adverse effects. These agents have considerable potential as novel and safe therapeutic agents that can prevent and combat age-related AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/metabolismo , Doenças Neuroinflamatórias , Dieta , Suplementos Nutricionais
5.
Cells ; 12(22)2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37998387

RESUMO

The most common neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD), are the seventh leading cause of mortality and morbidity in developed countries. Clinical observations of NDD patients are characterized by a progressive loss of neurons in the brain along with memory decline. The common pathological hallmarks of NDDs include oxidative stress, the dysregulation of calcium, protein aggregation, a defective protein clearance system, mitochondrial dysfunction, neuroinflammation, neuronal apoptosis, and damage to cholinergic neurons. Therefore, managing this pathology requires screening drugs with different pathological targets, and suitable drugs for slowing the progression or prevention of NDDs remain to be discovered. Among the pharmacological strategies used to manage NDDs, natural drugs represent a promising therapeutic strategy. This review discusses the neuroprotective potential of seaweed and its bioactive compounds, and safety issues, which may provide several beneficial insights that warrant further investigation.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Alga Marinha , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Estresse Oxidativo/fisiologia
6.
Infect Disord Drug Targets ; 22(1): e290721195143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34376138

RESUMO

OBJECTIVE: To evaluate the efficacy of reported anti-malarial phytochemicals as lead compounds for possible drug development against COVID-19. METHODS: An in silico approach was used in this study to determine through molecular docking the binding affinities and site of binding of these phytochemicals to the 3C-like protease of COVID-19 which is considered as the main protease of the virus. RESULTS: A number of anti-malarial phytochemicals like apigenin-7-O-glucoside, decurvisine, luteolin- 7-O-glucoside, sargabolide J, and shizukaols A, B, F, and G showed predicted high binding energies with ΔG values of -8.0 kcal/mol or higher. Shizukaols F and B demonstrated the best binding energies of -9.5 and -9.8, respectively. The acridone alkaloid 5-hydroxynoracronycine also gave a predicted high binding energy of -7.9 kcal/mol. CONCLUSION: This is for the first time that decursivine and several shizukaols were reported as potential anti-viral agents. These compounds merit further studies to determine whether they can be effective drug candidates against COVID-19.


Assuntos
Antimaláricos , Tratamento Farmacológico da COVID-19 , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Proteases 3C de Coronavírus , Glucosídeos , Humanos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , SARS-CoV-2
7.
Nutrients ; 14(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35057501

RESUMO

Severe acute respiratory syndrome (SARS)-CoV-2 virus causes novel coronavirus disease 2019 (COVID-19) with other comorbidities such as diabetes. Diabetes is the most common cause of diabetic nephropathy, which is attributed to hyperglycemia. COVID-19 produces severe complications in people with diabetes mellitus. This article explains how SARS-CoV-2 causes more significant kidney damage in diabetic patients. Importantly, COVID-19 and diabetes share inflammatory pathways of disease progression. SARS-CoV-2 binding with ACE-2 causes depletion of ACE-2 (angiotensin-converting enzyme 2) from blood vessels, and subsequently, angiotensin-II interacts with angiotensin receptor-1 from vascular membranes that produce NADPH (nicotinamide adenine dinucleotide hydrogen phosphate) oxidase, oxidative stress, and constriction of blood vessels. Since diabetes and COVID-19 can create oxidative stress, we hypothesize that COVID-19 with comorbidities such as diabetes can synergistically increase oxidative stress leading to end-stage renal failure and death. Antioxidants may therefore prevent renal damage-induced death by inhibiting oxidative damage and thus can help protect people from COVID-19 related comorbidities. A few clinical trials indicated how effective the antioxidant therapy is against improving COVID-19 symptoms, based on a limited number of patients who experienced COVID-19. In this review, we tried to understand how effective antioxidants (such as vitamin D and flavonoids) can act as food supplements or therapeutics against COVID-19 with diabetes as comorbidity based on recently available clinical, preclinical, or in silico studies.


Assuntos
Antioxidantes/uso terapêutico , COVID-19/complicações , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Humanos , Gravidade do Paciente , SARS-CoV-2
8.
Nutrients ; 14(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35267958

RESUMO

Obesity is a significant health concern, as it causes a massive cascade of chronic inflammations and multiple morbidities. Rheumatoid arthritis and osteoarthritis are chronic inflammatory conditions and often manifest as comorbidities of obesity. Adipose tissues serve as a reservoir of energy as well as releasing several inflammatory cytokines (including IL-6, IFN-γ, and TNF-α) that stimulate low-grade chronic inflammatory conditions such as rheumatoid arthritis, osteoarthritis, diabetes, hypertension, cardiovascular disorders, fatty liver disease, oxidative stress, and chronic kidney diseases. Dietary intake, low physical activity, unhealthy lifestyle, smoking, alcohol consumption, and genetic and environmental factors can influence obesity and arthritis. Current arthritis management using modern medicines produces various adverse reactions. Medicinal plants have been a significant part of traditional medicine, and various plants and phytochemicals have shown effectiveness against arthritis and obesity; however, scientifically, this traditional plant-based treatment option needs validation through proper clinical trials and toxicity tests. In addition, essential oils obtained from aromatic plants are being widely used as for complementary therapy (e.g., aromatherapy, smelling, spicing, and consumption with food) against arthritis and obesity; scientific evidence is necessary to support their effectiveness. This review is an attempt to understand the pathophysiological connections between obesity and arthritis, and describes treatment options derived from medicinal, spice, and aromatic plants.


Assuntos
Artrite Reumatoide , Doenças Cardiovasculares , Plantas Medicinais , Medicina Tradicional , Obesidade/tratamento farmacológico
9.
J Trop Med ; 2022: 7111786, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051190

RESUMO

Dengue is a Flavivirus infection transmitted through mosquitoes of the Aedes genus, which is known to occur in over 100 countries of the world. Dengue has no available drugs for treatment; CYD-TDV is the only vaccine thus far approved for use by a few countries in the world. In the absence of drugs and a widely approved vaccine, attention has been focused on plant-derived compounds to the discovery of a potential therapeutic for DENV. The present study aimed to determine, in silico, the binding energies of the steroidal saponins, melongosides, to NS2B-NS3 activator protease of DENV-2, which plays an essential role in the viral replication. The blind molecular docking studies carried out gave binding energies (ΔG = -kcal/mol) of melongosides B, F, G, H, N, O, and P as 7.7, 8.2, 7.6, 7.8, 8.3, 8.0, and 8.0, respectively. All the melongosides interacted with the NS3 protease part of NS2B-NS3. Melongosides B, F, and N showed interactions with His51, while melongoside G interacted with Asp75 of NS3, to be noted, these are important amino acid residues in the catalytic site of the NS3 protease. However, the 200 ns molecular dynamic simulation experiment indicates significant stability of the protein-ligand interactions with the RMSD values of 2.5 Å, thus suggesting a better docking position and no disruption of the protein-ligand structure. Taken together, melongosides need further attention for more scientific studies as a DENV inhibitory agent, which if proven, in vivo and in clinical trials, can be a useful therapeutic agent against at least DENV-2.

10.
Antibiotics (Basel) ; 11(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36139926

RESUMO

The emergence of multidrug-resistant bacteria and fungi requires the development of antibiotics and antifungal agents. This review identified natural products isolated from Asian angiosperms with antibacterial and/or antifungal activities and analyzed their distribution, molecular weights, solubility, and modes of action. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and a library search from 1979 to 2022. One hundred and forty-one antibacterial and/or antifungal alkaloids were identified during this period, mainly from basal angiosperms. The most active alkaloids are mainly planar, amphiphilic, with a molecular mass between 200 and 400 g/mol, and a polar surface area of about 50 Å2, and target DNA and/or topoisomerase as well as the cytoplasmic membrane. 8-Acetylnorchelerythrine, cryptolepine, 8-hydroxydihydrochelerythrine, 6-methoxydihydrosanguinarine, 2'-nortiliacorinine, pendulamine A and B, rhetsisine, sampangine, tiliacorine, tryptanthrin, tylophorinine, vallesamine, and viroallosecurinine yielded MIC ≤ 1 µg/mL and are candidates for the development of lead molecules.

11.
Plants (Basel) ; 11(9)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35567266

RESUMO

Nanomedicines emerged from nanotechnology and have been introduced to bring advancements in treating multiple diseases. Nano-phytomedicines are synthesized from active phytoconstituents or plant extracts. Advancements in nanotechnology also help in the diagnosis, monitoring, control, and prevention of various diseases. The field of nanomedicine and the improvements of nanoparticles has been of keen interest in multiple industries, including pharmaceutics, diagnostics, electronics, communications, and cosmetics. In herbal medicines, these nanoparticles have several attractive properties that have brought them to the forefront in searching for novel drug delivery systems by enhancing efficacy, bioavailability, and target specificity. The current review investigated various therapeutic applications of different nano-phytopharmaceuticals in locomotor, dermal, reproductive, and urinary tract disorders to enhance bioavailability and efficacy of phytochemicals and herbal extracts in preclinical and in vitro studies. There is a lack of clinical and extensive preclinical studies. The research in this field is expanding but strong evidence on the efficacy of these nano-phytopharmaceuticals for human use is still limited. The long-term efficacy and safety of nano-phytopharmaceuticals must be ensured with priority before these materials emerge as common human therapeutics. Overall, this review provides up-to-date information on related contemporary research on nano-phytopharmaceuticals and nano-extracts in the fields of dermatological, urogenital, and locomotor disorders.

12.
Microorganisms ; 9(5)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065638

RESUMO

Rheumatoid arthritis is a chronic autoimmune disorder that can lead to disability conditions with swollen joints, pain, stiffness, cartilage degradation, and osteoporosis. Genetic, epigenetic, sex-specific factors, smoking, air pollution, food, oral hygiene, periodontitis, Prevotella, and imbalance in the gastrointestinal microbiota are possible sources of the initiation or progression of rheumatoid arthritis, although the detailed mechanisms still need to be elucidated. Probiotics containing Lactobacillus spp. are commonly used as alleviating agents or food supplements to manage diarrhea, dysentery, develop immunity, and maintain general health. The mechanism of action of Lactobacillus spp. against rheumatoid arthritis is still not clearly known to date. In this narrative review, we recapitulate the findings of recent studies to understand the overall pathogenesis of rheumatoid arthritis and the roles of probiotics, particularly L. casei or L. acidophilus, in the management of rheumatoid arthritis in clinical and preclinical studies.

13.
Pharmaceutics ; 13(11)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34834309

RESUMO

Recent years have witnessed the emergence of several viral diseases, including various zoonotic diseases such as the current pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Other viruses, which possess pandemic-causing potential include avian flu, Ebola, dengue, Zika, and Nipah virus, as well as the re-emergence of SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) coronaviruses. Notably, effective drugs or vaccines against these viruses are still to be discovered. All the newly approved vaccines against the SARS-CoV-2-induced disease COVID-19 possess real-time possibility of becoming obsolete because of the development of 'variants of concern'. Flavonoids are being increasingly recognized as prophylactic and therapeutic agents against emerging and old viral diseases. Around 10,000 natural flavonoid compounds have been identified, being phytochemicals, all plant-based. Flavonoids have been reported to have lesser side effects than conventional anti-viral agents and are effective against more viral diseases than currently used anti-virals. Despite their abundance in plants, which are a part of human diet, flavonoids have the problem of low bioavailability. Various attempts are in progress to increase the bioavailability of flavonoids, one of the promising fields being nanotechnology. This review is a narrative of some anti-viral dietary flavonoids, their bioavailability, and various means with an emphasis on the nanotechnology system(s) being experimented with to deliver anti-viral flavonoids, whose systems show potential in the efficient delivery of flavonoids, resulting in increased bioavailability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA