RESUMO
Gene editing characterization with currently available tools does not always give precise relative proportions among the different types of gene edits present in an edited bulk of cells. We have developed CRISPR-Analytics, CRISPR-A, which is a comprehensive and versatile genome editing web application tool and a nextflow pipeline to give support to gene editing experimental design and analysis. CRISPR-A provides a robust gene editing analysis pipeline composed of data analysis tools and simulation. It achieves higher accuracy than current tools and expands the functionality. The analysis includes mock-based noise correction, spike-in calibrated amplification bias reduction, and advanced interactive graphics. This expanded robustness makes this tool ideal for analyzing highly sensitive cases such as clinical samples or experiments with low editing efficiencies. It also provides an assessment of experimental design through the simulation of gene editing results. Therefore, CRISPR-A is ideal to support multiple kinds of experiments such as double-stranded DNA break-based engineering, base editing (BE), primer editing (PE), and homology-directed repair (HDR), without the need of specifying the used experimental approach.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Reparo de DNA por Recombinação , Quebras de DNA de Cadeia DuplaRESUMO
BACKGROUND: Precision genome mutagenesis using CRISPR/Cas has become the standard method to generate mutant plant lines. Several improvements have been made to increase mutagenesis efficiency, either through vector optimisation or the application of heat stress. RESULTS: Here, we present a simplified heat stress assay that can be completed in six days using commonly-available laboratory equipment. We show that three heat shocks (3xHS) efficiently increases indel efficiency of LbCas12a and Cas9, irrespective of the target sequence or the promoter used to express the nuclease. The generated indels are primarily somatic, but for three out of five targets we demonstrate that up to 25% more biallelic mutations are transmitted to the progeny when heat is applied compared to non-heat controls. We also applied our heat treatment to lines containing CRISPR base editors and observed a 22-27% increase in the percentage of C-to-T base editing. Furthermore, we test the effect of 3xHS on generating large deletions and a homologous recombination reporter. Interestingly, we observed no positive effect of 3xHS treatment on either approach using our conditions. CONCLUSIONS: Together, our experiments show that heat treatment is consistently effective at increasing the number of somatic mutations using many CRISPR approaches in plants and in some cases can increase the recovery of mutant progeny.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Genoma de Planta/genética , Mutagênese , Plantas Geneticamente Modificadas/genéticaRESUMO
Comprehensive characterisation of genome engineering technologies is relevant for their development and safe use in human gene therapy. Short-read based methods can overlook insertion events in repetitive regions. We develop INSERT-seq, a method that combines targeted amplification of integrated DNA, UMI-based correction of PCR bias and Oxford Nanopore long-read sequencing for robust analysis of DNA integration. The experimental pipeline improves the number of mappable insertions at repetitive regions by 4.8-7.3% and larger repeats are processed with a computational peak calling pipeline. INSERT-seq is a simple, cheap and robust method to quantitatively characterise DNA integration in diverse ex vivo and in vivo samples.
Assuntos
Sequenciamento por Nanoporos , Humanos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequências Repetitivas de Ácido Nucleico , DNA/genéticaRESUMO
While multiple technologies for small allele genome editing exist, robust technologies for targeted integration of large DNA fragments in mammalian genomes are still missing. Here we develop a gene delivery tool (FiCAT) combining the precision of a CRISPR-Cas9 (find module), and the payload transfer efficiency of an engineered piggyBac transposase (cut-and-transfer module). FiCAT combines the functionality of Cas9 DNA scanning and targeting DNA, with piggyBac donor DNA processing and transfer capacity. PiggyBac functional domains are engineered providing increased on-target integration while reducing off-target events. We demonstrate efficient delivery and programmable insertion of small and large payloads in cellulo (human (Hek293T, K-562) and mouse (C2C12)) and in vivo in mouse liver. Finally, we evolve more efficient versions of FiCAT by generating a targeted diversity of 394,000 variants and undergoing 4 rounds of evolution. In this work, we develop a precise and efficient targeted insertion of multi kilobase DNA fragments in mammalian genomes.